کنترل کننده شارژ و تخلیه شارژ فازی
ترجمه نشده

کنترل کننده شارژ و تخلیه شارژ فازی

عنوان فارسی مقاله: کنترل کننده شارژ و تخلیه شارژ فازی مبتنی بر الگوریتم جستجو بازگشتی برای سیستم ذخیره باتری در کاربردهای ریزشبکه
عنوان انگلیسی مقاله: Backtracking Search Algorithm Based Fuzzy Charging-Discharging Controller for Battery Storage System in Microgrid Applications
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی برق
کلمات کلیدی فارسی: کنترل کننده فازی، حالت شارژ، ذخیره انرژی باتری، بهینه سازی، شارژ و تخلیه شارژ، ریزشبکه، بار
کلمات کلیدی انگلیسی: Fuzzy controller, state of charge, battery energy storage, optimization, charging-discharging, microgrid, load
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2951132
دانشگاه: Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia
صفحات مقاله انگلیسی: 12
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13969
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. Fuzzy Based Battery Storage System in MG

III. Fuzzy Based Charging-Discharging Model of the Battery

IV. Fuzzy Based BSA Optimization

V. Result and Analysis

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

This paper presents an efficient fuzzy logic control system for charging and discharging of the battery energy storage system in microgrid applications. Energy storage system can store energy during the off-peak hour and supply energy during peak hours in order to maintain the energy balance between the storage and microgrid. However, the integration of battery storage system with microgrid requires a flexible control of charging-discharging technique due to the variable load conditions. Therefore, a comparative evaluation of the developed model is analyzed by considering controllers with fuzzy only and optimized fuzzy algorithms. In this paper, backtracking search algorithm based fuzzy optimization is introduced to evaluate the state of charge of the battery by optimizing the input and output fuzzy membership functions of rate of change of the state of charge and power balance. Backtracking search algorithm is chosen due to its high convergence speed, and it is good for searching and exploration process with exploiting capabilities. To validate the performance of the developed controller, the obtained results are compared to the results obtained with the particle swarm optimization based fuzzy and fuzzy only controllers, respectively. Results show that the backtracking search algorithm based fuzzy optimization outperforms the other control methods in terms of effectively manage the charging-discharging of the battery storage to ensure the desired outcome and reliable microgrid operation.

Introduction

Fossil fuel-based conventional energy sources such as coal, oil, natural gas have strong negative impact on the environment. Moreover, the availability of these fossil fuels is decreasing day by day. Hence, extracting energy from renewable sources such as solar, wind, biomass etc. and their storage systems are becoming the new paradigm to overcome the shortcomings of energy development [1]. These renewable energy technologies have long term benefit of clean and sustainable energy production. Energy Storage Systems (ESS) manages the decent power balance during the power crisis, thus has a significant impact to stabilize the overall power system by mitigating the intermittent nature of renewable generation. ESS can store energy during off-peak hours and release them in peak hours. This trend of integrating renewable sources with ESS and loads is utilizing in microgrid applications. A simplified conceptual framework of this interconnected system is shown in Fig. 1 [2]. Here, the distributed sources, loads and storage are connected to the main grid with point of common coupling (PCC). Microgrid (MG) is capable of operating in both gridconnected and islanded mode. In grid-tied system, power balance between MG and main grid protect the system from frequency instability. However, in islanded mode MG operates with off-grid network, hence primary frequency control becomes crucial.