مسیریابی کارآمد در شبکه حسگر بی سیم
ترجمه نشده

مسیریابی کارآمد در شبکه حسگر بی سیم

عنوان فارسی مقاله: مسیریابی کارآمد از نظر انرژی در شبکه حسگر بی سیم: یک رویکرد مبتنی بر خوشه متمرکز از طریق بهینه ساز گرگ خاکستری
عنوان انگلیسی مقاله: Energy-Efficient Routing in WSN: A Centralized Cluster-Based Approach via Grey Wolf Optimizer
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: مهندسی الگوریتم و محاسبات، شبکه های کامپیوتری
کلمات کلیدی فارسی: خوشه بندی، بهینه ساز گرگ خاکستری، مسیریابی، شبکه حسگر بی سیم
کلمات کلیدی انگلیسی: Clustering, grey wolf optimizer, routing, WSN
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2955993
دانشگاه: Department of Computer and Electrical Engineering, Imam Reza International University, Mashhad 553-91735, Iran
صفحات مقاله انگلیسی: 13
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14061
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. System Model

III. Proposed Protocol

IV. Clustering Based on Grey Wolf Optimzer

V. Protocol Analysis

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

Energy efficiency is one of the main challenges in developing Wireless Sensor Networks (WSNs). Since communication has the largest share in energy consumption, efficient routing is an effective solution to this problem. Hierarchical clustering algorithms are a common approach to routing. This technique splits nodes into groups in order to avoid long-range communication which is delegated to the cluster head (CH). In this paper, we present a new clustering algorithm that selects CHs using the grey wolf optimizer (GWO). GWO is a recent swarm intelligence algorithm based on the behavior of grey wolves that shows impressive characteristics and competitive results. To select CHs, the solutions are rated based on the predicted energy consumption and current residual energy of each node. In order to improve energy efficiency, the proposed protocol uses the same clustering in multiple consecutive rounds. This allows the protocol to save the energy that would be required to reform the clustering. We also present a new dual-hop routing algorithm for CHs that are far from the base station and prove that the presented method ensures minimum and most balanced energy consumption while remaining nodes use single-hop communication. The performance of the protocol is evaluated in several different scenarios and it is shown that the proposed protocol improves network lifetime in comparison to a number of recent similar protocols.

Introduction

Wireless sensor networks (WSNs) are emerging low-cost and versatile solutions that enable controlled monitoring of the environment. They generally consist of a large number of small sensing devices that are capable of data processing and wireless communication. These sensor nodes can be deployed in various environments to implement applications such as habitat monitoring, military surveillance, home and industrial automation, and smart grids [1], [2]. Recent advances in electronic circuit design have made it possible to build lighter, cheaper and more energy efficient sensors. However many research areas including energy efficiency need to be further studied [3]. In many applications, sensor nodes are equipped with a non-rechargeable battery that restricts network lifetime [4]. There are several definitions for lifetime, such as the time until the first node dies or the time that the last node dies or the time until a specific fraction of nodes die [5]. After the death of the first node, the performance of the network will degrade sharply [6]. In [7] and [8], network lifetime is defined in terms of node lifetime, coverage, and connectivity. Although the use of renewable energy sources for sensor nodes are investigated in Energy Harvesting Wireless Sensors Networks (EHWSN) [9], wise use of the available energy is still required for long running WSNs. Most WSNs measure physical parameters such as temperature, humidity or location of objects.