الگوریتم طبقه بندی تصویر رادار روزنه مصنوعی
ترجمه نشده

الگوریتم طبقه بندی تصویر رادار روزنه مصنوعی

عنوان فارسی مقاله: الگوریتم طبقه بندی تصویر رادار روزنه مصنوعی (SAR) بر اساس پارامترهای قطبیت سنجی چند صفتی با استفاده از الگوریتم بهینه سازی مگس میوه (FOA) و ماشین بردار پشتیبانی حداقل مربعات (LS-SVM)
عنوان انگلیسی مقاله: A SAR Image Classification Algorithm Based on Multi-Feature Polarimetric Parameters Using FOA and LS-SVM
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: مهندسی الگوریتم و محاسبات
کلمات کلیدی فارسی: تصویر رادار روزنه مصنوعی (SAR) قطبیت سنج، طبقه بندی، چند صفتی، الگوریتم بهینه سازی مگس میوه (FOA)
کلمات کلیدی انگلیسی: Polarimetric SAR image, classification, multi-feature, FOA
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2957547
دانشگاه: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
صفحات مقاله انگلیسی: 18
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14084
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

ABSTRACT

I. INTRODUCTION

II. METHODOLOGY

III. EXPERIMENTAL RESULTS AND DISCUSS

IV. CONCLUSION

REFERENCES

بخشی از مقاله (انگلیسی)

ABSTRACT

This paper presents a Synthetic Aperture Radar (SAR) image classification algorithm based on multi-feature using Fruit Fly Optimization Algorithm (FOA) and Least Square Support Vector Machine (LS-SVM). First, pixel-based information derived from three elements of coherency matrix, six parameters obtained by H/α/A decomposition and Freeman decomposition techniques, and three polarimetric parameters including the total receive power (SPAN), pedestal height, and Radar Vegetation Index (RVI), as well as region-based information derived from eight texture parameters obtained by Grey Level Co-occurrence Matrix (GLCM) are combined to use as the features of land cover. Second, Kernel Principal Component Analysis (KPCA) is used to reduce the dimensionality of the multi-feature data derived from the integration of the pixel-based and region-based information. Third, LS-SVM is used as the classifier in this study due to its fast solving speed and desirable classification capability. Since the input parameters of LS-SVM significantly affect the classification performance, we employ FOA to obtain the optimized input parameters. Finally, the experiments on two fully polarimetric SAR images of various crops with a limited number of samples are implemented by the proposed method and other commonly used methods, respectively. The results show that the proposed method can attain better classification performances compared with other methods.

INTRODUCTION

Land cover information is important for land development and management. Land cover classification is also the first step in remote sensing of vital global parameters such as soil moisture. Remotely sensing data obtained from various sensors provides an economical way to characterize land cover information. Optical remote sensing is an effective approach but by itself is limited by weather conditions. Synthetic Aperture Radar (SAR), which can obtain information under different weather conditions, is therefore used for acquiring land cover information in various regions. Significant research aiming at land cover classification has been reported by many researchers. In the early years, most studies were developed based on single-polarization data [1], [2]. Since single-polarization data does not contain all the polarization information of ground objects, such methods were most likely to create confusion among similar ground objects and thereby were only suited for coarse classification [3]–[5]. With the rapid development of the SAR techniques, many methods utilizing multi-polarization or full-polarization data were explored for attaining a better classification [6]–[8]. The critical procedure for these methods is polarimetric decomposition, which provides a way to obtain the physical features of natural media. Many polarimetric decomposition methods have been explored by many researchers [9]–[14].