هم ارزی دو فرآیند مالیاتی
ترجمه نشده

هم ارزی دو فرآیند مالیاتی

عنوان فارسی مقاله: هم ارزی دو فرآیند مالیاتی
عنوان انگلیسی مقاله: The equivalence of two tax processes
مجله/کنفرانس: بیمه: ریاضیات و اقتصاد – Insurance: Mathematics and Economics
رشته های تحصیلی مرتبط: حسابداری
گرایش های تحصیلی مرتبط: حسابداری مالیاتی
کلمات کلیدی فارسی: فرآیند خطر، فرآیند مالیاتی، نرخ مالیاتی، فرآیند Lévy طیف منفی، احتمال خرابی، هویت مالیاتی، کنترل بهینه
کلمات کلیدی انگلیسی: Risk process، Tax process، Tax rate، Spectrally negative Lévy process، Ruin probability، Tax identity، Optimal control
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.insmatheco.2019.10.002
دانشگاه: University of Manchester, Department of Mathematics, UK
صفحات مقاله انگلیسی: 6
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 1.442 در سال 2019
شاخص H_index: 66 در سال 2020
شاخص SJR: 0.949 در سال 2019
شناسه ISSN: 0167-6687
شاخص Quartile (چارک): Q2 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14219
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

MSC

۱٫ Introduction and main results

۲٫ Related work and further applications

۳٫ Proofs

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

We introduce two models of taxation, the latent and natural tax processes, which have both been used to represent loss-carry-forward taxation on the capital of an insurance company. In the natural tax process, the tax rate is a function of the current level of capital, whereas in the latent tax process, the tax rate is a function of the capital that would have resulted if no tax had been paid. Whereas up to now these two types of tax processes have been treated separately, we show that, in fact, they are essentially equivalent. This allows a unified treatment, translating results from one model to the other. Significantly, we solve the question of existence and uniqueness for the natural tax process, which is defined via an integral equation. Our results clarify the existing literature on processes with tax.

Introduction and main results

Risk processes are a model for the evolution in time of the (economic) capital or surplus of an insurance company. Suppose that we have some model X = (Xt)t≥۰ for the risk process, in which Xt represents the capital of the company at time t; for instance, a common choice is for X to be a Lévy process with negative jumps. Any such model can be modified in order to incorporate desirable features. For instance, reflecting the path at a given barrier models the situation where the insurance company pays out any capital in excess of the barrier as dividends to shareholders. Similarly, ‘refracting’ the path at a given level and with a given angle corresponds to the case where dividends are paid out at a certain fixed rate whenever the capital is above the level or, equivalently, corresponds to a two-step premium rate. These modifications are described in more detail in Chapter 10 of Kyprianou (2014), in the Lévy process case. Between the reflected and refracted processes are a class of processes where partial reflection occurs whenever the process reaches a new maximum. The motivation in risk theory for these processes is that the times of partial reflection can be understood to correspond to tax payments associated with a so-called losscarry-forward regime in which taxes are paid only when the insurance company is in a profitable situation. In this paper we study tax processes of this kind.