یک مرور کلی درباره تلفیق داده های بزرگ شهری مبتنی بر یادگیری عمیق
ترجمه نشده

یک مرور کلی درباره تلفیق داده های بزرگ شهری مبتنی بر یادگیری عمیق

عنوان فارسی مقاله: تلفیق داده های بزرگ شهری مبتنی بر یادگیری عمیق: یک مرور کلی
عنوان انگلیسی مقاله: Urban big data fusion based on deep learning: An overview
مجله/کنفرانس: هم جوشانی اطلاعات - Information Fusion
کلمات کلیدی فارسی: محاسبات شهری، داده های بزرگ، تلفیق داده ها، یادگیری عمیق
کلمات کلیدی انگلیسی: Urban computing، Big data، Data fusion، Deep learning
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.inffus.2019.06.016
دانشگاه: School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 13/201 در سال 2019
شاخص H_index: 85 در سال 2020
شاخص SJR: 2/238 در سال 2019
شناسه ISSN: 1566-2535
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14304
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Related work

3- Urban big data fusion based on deep learning

4- Difficulties and ideas of urban big data fusion

5- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

Urban big data fusion creates huge values for urban computing in solving urban problems. In recent years, various models and algorithms based on deep learning have been proposed to unlock the power of knowledge from urban big data. To clarify the methodologies of urban big data fusion based on deep learning (DL), this paper classifies them into three categories: DL-output-based fusion, DL-input-based fusion and DL-double-stage-based fusion. These methods use deep learning to learn feature representation from multi-source big data. Then each category of fusion methods is introduced and some examples are shown. The difficulties and ideas of dealing with urban big data will also be discussed.

Introduction

Our life and the city we live in affect each other. In the era of big data, it is urgent to effectively use urban big data to solve problems in the city, such as traffic congestion [1,2], noise pollution [3,4], air pollution [5,6], etc., to improve our life experience. Nowadays, many urban computing methods based on deep learning have been put forward to solve urban problems, such as urban traffic flow prediction [7,8], urban crowd flows prediction [9,10], urban air prediction [11,12], urban water quality prediction [13,14], etc. In these urban computing methods, the big data used by the researchers are all from different sources, such as meteorological stations, taxi detectors, online weather web sites, etc. Moreover, urban big data shows different representations, such as text, numbers and symbols. Bello et al. [15] and Zhang et al.[16] summarized five characteristics of big data, that is, large volume, large velocity, large variety, veracity and value, which are called 5V’s features. The 5V’s features of the data indirectly indicate a big explosion in data amount. On the one hand, how to sense, obtain and manage these big data is a challenge; On the other hand, how to analyze and excavate the value of these big data is another significant challenge. Apparently, the urban big data with 5V’s characteristics brings great challenges to urban computing. Fig. 1 depicts the urban big data. Firstly, urban big data comes from many sources. When studying the real-time city-wide traffic volume, the data usually come from taxi sensor, exploratory data, monitoring data and Internet web data. For example, Meng et al.