تحمل خطا در سیستم های محاسباتی عصبی مبتنی بر memristive crossbar
ترجمه نشده

تحمل خطا در سیستم های محاسباتی عصبی مبتنی بر memristive crossbar

عنوان فارسی مقاله: تحمل خطا در سیستم های محاسباتی عصبی مبتنی بر memristive crossbar
عنوان انگلیسی مقاله: Fault tolerance in memristive crossbar-based neuromorphic computing systems
مجله/کنفرانس: مجله VLSI، ادغام - Integration, the VLSI Journal
رشته های تحصیلی مرتبط: کامپیوتر
گرایش های تحصیلی مرتبط: مهندسی الگوریتم ها و محاسبات، مهندسی نرم افزار
کلمات کلیدی فارسی: سیستم محاسبات عصب گون، Memristive crossbar، تحمل خطا، خوشه بندی سلسله مراتبی
کلمات کلیدی انگلیسی: Neuromorphic computing system، Memristive crossbar، Fault tolerance، Hierarchical clustering
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.vlsi.2019.09.008
دانشگاه: Department of Electronic Science and Technology, Hefei University of Technology, China
صفحات مقاله انگلیسی: 10
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 1/613 در سال 2019
شاخص H_index: 33 در سال 2020
شاخص SJR: 0/260 در سال 2019
شناسه ISSN: 0167-9260
شاخص Quartile (چارک): Q3 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E14455
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Preliminaries

3- Fault tolerant framework for NCS

4- Experimental results

5- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

In recent years, neuromorphic computing systems (NCS) based on memristive crossbar have provided a promising solution to enable acceleration of neural networks. However, Stuck-at faults in the memristor devices significantly degrade the computing accuracy of NCS. In this paper, we propose an effective fault tolerant framework for memristive crossbar-based neuromorphic computing systems. First, a fault tolerance-aware hierarchical clustering method is proposed to partition weight connections of a sparse neural network into clusters. Then, for each cluster, memristive crossbar configuration is proposed to determine a suitable size of the crossbar with consideration of both hardware cost and successful mapping rate. Next, an integer linear programming formulation is developed to derive a connection-memristor mapping for fault tolerance. Finally, an efficient matching-based heuristic algorithm is further proposed to speed-up the fault-tolerant mapping process. Experimental results show that the proposed fault tolerant framework can improve the successful mapping rate and simultaneously reduce the hardware cost.

Introduction

Neuromorphic computing systems (NCS) based on hardware designs intend to mimic neuro-biological architectures [1]. Different from conventional von Neumann architectures, NCS is often constructed with highly parallel, extensively connected, and collocated computing and storage units, which eliminates the gap between CPU computing capacity and memory bandwidth [2]. However, the implementation of NCS on CMOS technology has been shown to suffer from mismatch between NCS building blocks (neuron and synapse) and CMOS primitives (Boolean logic). To address this problem, the emerging memristive technology is adopted to implement synapse circuit due to the similarity between memristive and synaptic behaviors [3,4]. For example, the memristor is suitable to store the weight of synapse since the resistance of memristor can be programmed by applying current or voltage. In addition, compared with the stateof-the-art CMOS design, memristive crossbar has been proven as one of the most efficient nanostructures that carry out matrix-vector multiplications while hardware cost and computation energy are significantly reduced [1]. However, despite of these tremendous advantages, NCS implementations on memristive crossbars also encounter some design challenges.