تجزیه و تحلیل جریان احتمالی بار
ترجمه نشده

تجزیه و تحلیل جریان احتمالی بار

عنوان فارسی مقاله: یک روش تحلیلی مبتنی بر سناریو برای تجزیه و تحلیل جریان احتمالی بار
عنوان انگلیسی مقاله: A scenario-based analytical method for probabilistic load flow analysis
مجله/کنفرانس: تحقیقات سیستم های توان برق – Electric Power Systems Research
رشته های تحصیلی مرتبط: مهندسی برق
گرایش های تحصیلی مرتبط: مهندسی الکترونیک
کلمات کلیدی فارسی: جریان احتمالی بار، منبع انرژی تجدیدپذیر، همبستگی، تجزیه و تحلیل سناریو، انباشته
کلمات کلیدی انگلیسی: Probabilistic load flow، Renewable energy source، Correlation، Scenario analysis، Cumulant
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.epsr.2019.106193
دانشگاه: School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei Province, China
صفحات مقاله انگلیسی: 9
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 3.782 در سال 2019
شاخص H_index: 104 در سال 2020
شاخص SJR: 1.037 در سال 2019
شناسه ISSN: 0378-7796
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E14495
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

۱٫ Introduction

۲٫ Modeling of uncertainty

۳٫ Scenario analysis of stochastic variable

۴٫ Scenario-based cumulant method for PLF

۵٫ Case study

۶٫ Conclusion

Conflict of interest

CRediT authorship contribution statement

Acknowledgment

References

بخشی از مقاله (انگلیسی)

Abstract

In recent years, power system uncertainties have increased due to the growing integrations of intermittent renewable energy resources. It is imperative to introduce probabilistic load flow analysis in the study of power system operation and planning to adapt to the ever-increasing uncertainties. This paper proposes a scenariobased analytical method for the probabilistic load flow analysis, which takes advantage of both the scenario analysis method and the cumulant method. This method can not only consider various kinds of correlations among power inputs but also accurately represent the probability distributions of desired outputs with a reasonable computational burden. The performance of this method is evaluated on the IEEE 14-bus and 118-bus test systems. The accuracy and efficiency of the proposed method are validated through quantitative and graphical comparisons with Monte-Carlo simulation.

Introduction

In the past few years, renewable energy sources (RES) have experienced rapid development due to their numerous advantages. More and more uncertainties have been penetrating into the modern power systems, not only from load demands, network topology changes, outages of system components but also from the generations of RES, such as solar and wind power. Besides, due to complex meteorological processes, there are significant spatiotemporal correlations among the RES generation. Hence, assessing the behaviors of power systems with complex uncertainties becomes indispensable. Probabilistic load flow (PLF), firstly proposed in 1974 [1], has become the commonly used tool to analyze the influence of power system uncertainties. There are three mainstream PLF methods: numerical methods, analytical methods, and approximate methods [2]. As the most straightforward numerical method, Monte-Carlo simulation (MCS) firstly represents the uncertainties of input random variables (RVs) with a series of samples and then obtains the probability distributions of output RVs through a large number of deterministic power flow (DLF) calculations. The traditional MCS method with simple random sampling (MCS-SRS) [3] usually requires 104 –106 trials to harvest accurate results. The massive computational burden hinders its applications in large-scale power systems. Hence, serval advanced sampling techniques, such as Latin supercube sampling [4], uniform design sampling [5], and Latin hypercube sampling (LHS) [6,7] are introduced to improve the computational efficiency. Besides, combined MCS and parallel computing [8] provides a promising approach for online PLF analysis. It achieves high accuracy at a low computational burden.