یادگیری عمیق در سنجش از راه دور
ترجمه نشده

یادگیری عمیق در سنجش از راه دور

عنوان فارسی مقاله: یادگیری عمیق در سنجش از راه دور محیط زیست: دستاوردها و چالش ها
عنوان انگلیسی مقاله: Deep learning in environmental remote sensing: Achievements and challenges
مجله/کنفرانس: سنجش از راه دور محیط زیست – Remote Sensing of Environment
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: هوش مصنوعی، شبکه های کامپیوتری
کلمات کلیدی فارسی: سنجش از راه دور محیط زیست، یادگیری عمیق، بازیابی پارامتر، شبکه عصبی
کلمات کلیدی انگلیسی: Environmental remote sensing، Deep learning، Parameter retrieval، Neural network
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.rse.2020.111716
دانشگاه: School of Geodesy and Geomatics, Wuhan University, Wuhan, China
صفحات مقاله انگلیسی: 24
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 8.426 در سال 2019
شاخص H_index: 238 در سال 2020
شاخص SJR: 3.208 در سال 2019
شناسه ISSN: ۰۰۳۴-۴۲۵۷
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14655
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

۱٫ Introduction

۲٫ What can DL do for environmental remote sensing?

۳٫ Basic DL framework

۴٫ Applications

۵٫ Discussion and recommendations for future work

۶٫ Conclusion

CRediT authorship contribution statement

Declaration of competing interest

Acknowledgments

Appendix A. Nomenclature

References

بخشی از مقاله (انگلیسی)

Abstract

Various forms of machine learning (ML) methods have historically played a valuable role in environmental remote sensing research. With an increasing amount of “big data” from earth observation and rapid advances in ML, increasing opportunities for novel methods have emerged to aid in earth environmental monitoring. Over the last decade, a typical and state-of-the-art ML framework named deep learning (DL), which is developed from the traditional neural network (NN), has outperformed traditional models with considerable improvement in performance. Substantial progress in developing a DL methodology for a variety of earth science applications has been observed. Therefore, this review will concentrate on the use of the traditional NN and DL methods to advance the environmental remote sensing process. First, the potential of DL in environmental remote sensing, including land cover mapping, environmental parameter retrieval, data fusion and downscaling, and information reconstruction and prediction, will be analyzed. A typical network structure will then be introduced. Afterward, the applications of DL environmental monitoring in the atmosphere, vegetation, hydrology, air and land surface temperature, evapotranspiration, solar radiation, and ocean color are specifically reviewed. Finally, challenges and future perspectives will be comprehensively analyzed and discussed.

Introduction

The earth’s environmental deterioration, which is caused by human behavior and is continuously aggravating, has become the primary problem hindering further developments of global changes. The lack of resources and environmental deterioration are no longer exclusive phenomena in specific regions. In the last 50 years, space information technology, especially satellite remote sensing technology, has provided advanced detection and research means for the investigation of the earth’s resources, the monitoring of local and regional environmental changes, and even the study of global changes, with the advantages of being macro, comprehensive, fast, dynamic, and accurate (Overpeck et al., 2011; Yang et al., 2013). Remote sensing data are mainly used for environmental parameter monitoring based on physical models (Liang, 2005). Although physical models can effectively express the formation process from environmental parameters to remote sensing observations, these models are largely dependent on the prior knowledge of the model parameters. Such knowledge often has large uncertainty due to the high complexity of the physical process and varies in different periods and regions, which tends to result in the limited accuracy of environmental remote sensing.