تشخیص رویدادهای لکنت زبان در گفتار با استفاده از برچسب گذاری توالی
ترجمه نشده

تشخیص رویدادهای لکنت زبان در گفتار با استفاده از برچسب گذاری توالی

عنوان فارسی مقاله: برچسب گذاری توالی برای تشخیص رویدادهای لکنت زبان در گفتار خوانده شده
عنوان انگلیسی مقاله: Sequence labeling to detect stuttering events in read speech
مجله/کنفرانس: زبان و گفتار رایانه - Computer Speech & Language
رشته های تحصیلی مرتبط: کامپیوتر، روانشناسی
گرایش های تحصیلی مرتبط: روانسنجی، هوش مصنوعی، برنامه نویسی کامپیوتر، مهندسی نرم افزار
کلمات کلیدی فارسی: تشخیص رویداد لکنت زبان، اختلال گفتاری، CRF ،BLSTM
کلمات کلیدی انگلیسی: Stuttering event detection، Speech disorder، BLSTM، CRF
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.csl.2019.101052
دانشگاه: Computer Science Department, The University of Sheffield, United Kingdom
صفحات مقاله انگلیسی: 36
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 2/701 در سال 2019
شاخص H_index: 62 در سال 2020
شاخص SJR: 0/528 در سال 2019
شناسه ISSN: 0885-2308
شاخص Quartile (چارک): Q2 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14673
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Previous work

3- Data transcription and annotation

4- Detecting stuttering events

5- Features of the classifiers used to detect stuttering events

6- Automatic speech recognition system

7- Experiments

8- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

Stuttering is a speech disorder that, if treated during childhood, may be prevented from persisting into adolescence. A clinician must first determine the severity of stuttering, assessing a child during a conversational or reading task, recording each instance of disfluency, either in real time, or after transcribing the recorded session and analysing the transcript. The current study evaluates the ability of two machine learning approaches, namely conditional random fields (CRF) and bi-directional long-short-term memory (BLSTM), to detect stuttering events in transcriptions of stuttering speech. The two approaches are compared for their performance both on ideal hand-transcribed data and also on the output of automatic speech recognition (ASR). We also study the effect of data augmentation to improve performance. A corpus of 35 speakers’ read speech (13K words) was supplemented with a corpus of 63 speakers’ spontaneous speech (11K words) and an artificially-generated corpus (50K words). Experimental results show that, without feature engineering, BLSTM classifiers outperform CRF classifiers by 33.6%. However, adding features to support the CRF classifier yields performance improvements of 45% and 18% over the CRF baseline and BLSTM results, respectively. Moreover, adding more data to train the CRF and BLSTM classifiers consistently improves the results.

Introduction

Stuttering, also known as stammering, is a speech communication disorder that can have severe social, educational and emotional maladjustment consequences, not only for the people who stutter but also for their families [1, 2]. It is presumed that early intervention is best to offset potential later impacts of having a stutter on one’s psycho-social and communication developments [3]. During the assessment phase, clinicians carefully measure the stuttering events to determine if the stuttering is normal disfluency, borderline stuttering or beginning stuttering [4]. There are several approaches to determine stuttering severity. The fluency of very young children is commonly assessed through a conversational task, whereas for children older than seven years, a reading task may be used [5, 6]. The clinician asks the child to read from a passage, and then records each instance of disfluency while the child is reading. Clearly, this process is extremely dependent on the clinician’s experience [7, 8, 9, 10].