بازنمایی های های محلی برای تشخیص چهره مقیاس پذیر
ترجمه نشده

بازنمایی های های محلی برای تشخیص چهره مقیاس پذیر

عنوان فارسی مقاله: یادگیری بازنمایی های های محلی برای تشخیص چهره RGB-D مقیاس پذیر
عنوان انگلیسی مقاله: Learning local representations for scalable RGB-D face recognition
مجله/کنفرانس: سیستم های خبره با برنامه های کاربردی - Expert Systems With Applications
رشته های تحصیلی مرتبط: کامپیوتر
گرایش های تحصیلی مرتبط: هوش مصنوعی، مهندسی الگوریتم ها و محاسبات، مهندسی نرم افزار
کلمات کلیدی فارسی: تشخيص چهره، SRC، توصيف گرهای مبتنی بر داده ها، شبكه هاي عصبي پیچشی، سنسور های BSIF ،RGB-D، يادگيری عميق
کلمات کلیدی انگلیسی: Face recognition، SRC، Data-driven descriptors، Convolutional neural networks، BSIF، RGB-D Sensors، Deep learning
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.eswa.2020.113319
دانشگاه: MIRACL-FS, Sfax University, Road Sokra Km 3 BP 802, Sfax 3018, Tunisia
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 5/891 در سال 2019
شاخص H_index: 162 در سال 2020
شاخص SJR: 1/190 در سال 2019
شناسه ISSN: 0957-4174
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 47
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14718
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست انگلیسی مطالب

Abstract


1- Introduction


2- Related work


3- Proposed RGB-D face recognition approach


4- Experimental results


5- Conclusion


References

نمونه متن انگلیسی مقاله

Abstract


In this article we present a novel RGB-D learned local representations for face recognition based on facial patch description and matching. The major contribution of the proposed approach is an efficient learning and combination of data-driven descriptors to characterize local patches extracted around image reference points. We explored the complementarity between both of deep learning and statistical image features as data-driven descriptors. In addition, we proposed an efficient high-level fusion scheme based on a sparse representation algorithm to leverage the complementarity between image and depth modalities and also the used data-driven features. Our approach was extensively evaluated on four well-known benchmarks to prove its robustness against known challenges in the case of face recognition. The obtained experimental results are competitive with the state-of-the-art methods while providing a scalable and adaptive RGB-D face recognition method.


Introduction


Face recognition for an automated person identification has received great attention over the years as it offers the most user-friendly and non-invasive modality. Face recognition based on standard two dimensional (2-D) images was extensively studied but it still suffers from problems related to imaging conditions and face pose variations. Thanks to the progress in three-dimensional (3-D) technology, recent research has shifted from 2-D to 3-D (Abbad et al., 2018). Indeed, 3-D face representation ensures a reliable surface shape description and adds geometric shape information to the face characterization. Most recently, some researchers proposed to use image and depth data captured from cost-effective RGB-D sensors like MS Kinect or Intel RealSense instead of bulky and expensive 3-D scanners. In addition to color images, RGB-D sensors provide depth maps describing the scene 3-D shape by active vision or an alternative technology. Driven by the emergence of this type of sensors and the latest advances in deep learning techniques, RGB-D face recognition is now becoming at the heart of several recent research studies. Indeed, it is nowadays crystal clear that data-driven feature extraction, using Convolutional Neural Networks (CNNs) for example, outperforms traditional hand-crafted features for many computer vision tasks like object detection (Szegedy et al., 2013), image clas sification (Krizhevsky et al., 2012), etc. When it comes to the RGB-D face recognition, the observed challenges basically deal with face pose variations, partial occlusions, imaging conditions, and discriminant feature extraction.

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

بازنمایی های های محلی برای تشخیص چهره مقیاس پذیر
نوشته های مرتبط
مقالات جدید
پیوندها