ارزیابی سیستماتیک روشهای تشخیص چهره عمیق
ترجمه نشده

ارزیابی سیستماتیک روشهای تشخیص چهره عمیق

عنوان فارسی مقاله: ارزیابی سیستماتیک روشهای تشخیص چهره عمیق
عنوان انگلیسی مقاله: Systematic evaluation of deep face recognition methods
مجله/کنفرانس: محاسبات نورونی - Neurocomputing
رشته های تحصیلی مرتبط: کامپیوتر
گرایش های تحصیلی مرتبط: هوش مصنوعی، مهندسی نرم افزار، معماری سیستم های کامپیوتری، مهندسی الگوریتم ها و محاسبات
کلمات کلیدی فارسی: تشخیص چهره عمیق، ارزیابی مدل سیمایی، پیشنهاد طراحی مدل
کلمات کلیدی انگلیسی: Deep face recognition، Facial model evaluation، Model design recommendation
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.neucom.2020.01.023
دانشگاه: Department of Control Science & Engineering, Tongji University, Shanghai, China
صفحات مقاله انگلیسی: 18
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 5/188 در سال 2019
شاخص H_index: 110 در سال 2020
شاخص SJR: 0/996 در سال 2019
شناسه ISSN: 0925-2312
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14722
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Related works

3- Evaluation framework

4- Evaluation results and analyses

5- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

Face recognition is an important task in both academia and industry. With the development of deep convolutional neural networks, many deep face recognition methods have been proposed and have achieved remarkable results. However, these methods show great diversity among their datasets, network architectures, loss functions, and parameter learning strategies. For those who want to apply these technologies to establish a deep face recognition system, it is bewildering to evaluate which improvements are more suitable and effective. This study systematically summarizes and evaluates the state-of-the-art face recognition methods. However, unlike general reviews, on the basis of a survey, this study presents a comprehensive evaluation framework and measures the effects of multifarious settings in five components, including data augmentation, network architecture, loss function, network training, and model compression. Based on the experimental results, the influences of these five components on the deep face recognition are summarized. In terms of the datasets, a high sample-identity ratio is conducive to generalization, but it leads to increased difficulty for the training to converge. For the network architecture, deep ResNet has an advantage over other designs. Various normalization operations in the network are also necessary. For the loss function, whose performance is closely related to network design and training conditions. The angle-margin loss has a higher upper bound performance, but the traditional Euclidean-margin loss has a stable performance in limited training condition and shallower network. In terms of the training strategy, the step-declining learning rate and large batch size are recommended for recognition tasks. Furthermore, this study compares several popular model compression methods and shows that MobileNet has advantages over the others in terms of both compression ratio and robustness. Finally, a detailed list of recommended settings is provided.

Introduction

Face recognition (FR) has a wide range of applications, such as security and electronic payments. It has drawn much attention in computer vision in recent decades. In the early stage, many traditional methods encounter bottlenecks in performance due to the limitations of computing power and model capability[1, 2]. With the advent of deep convolutional neural networks (DCNNs) and increased hardware capability, these restrictions have been rapidly eliminated, and many DCNN-based FR methods have been proposed[3–7]. However, these DCNN-based methods show great diversity among their implementation settings, which makes it difficult to determine which settings of a specific method are worth learning. For instance, Parkhi et al.[8] designed a VGGNetbased model trained with face images from 2,622 identities, and Schroff et al. purposed the GoogLeNet-based FaceNet[9], but trained with images from 8M different identities. Although the latter model achieved a better result than the former, we cannot simply assert that GoogLeNet-based[10] models are more suitable for face feature extraction than VGGNet-based models. Moreover, even within a single method, the effectiveness of operations is difficult to confirm. Taking Arcface[11] as an example, the original paper stated that Arcface Loss was favorable to network training, but it lacked comparison experiments. Thus, it remains questionable whether that loss function is better than the conventional Center Loss[12]. A complete FR system has a few fixed components. Figure 1 shows the general pipeline, including the detection, alignment, feature extraction, and similarity calculation[13, 14]. In this article, we focus on the feature extraction, which is a key factor for improving the performance of FR systems (Figure 1 can describe both traditional and DCNN-based recognition systems. We primarily discusses the latter in this paper. Unless otherwise specified, the term “model” in the following refers to the DCNN model). In this paper, we analyze the process of model design, and summarize five components that have great influences on the final performance, including data augmentation, network architecture, loss functions, network training, and model compression.