نانوذرات چند لایه ترکیبی برای ویرایش ژنوم CRISPR-Cas9
ترجمه نشده

نانوذرات چند لایه ترکیبی برای ویرایش ژنوم CRISPR-Cas9

عنوان فارسی مقاله: نانوذرات چند لایه ترکیبی برای ویرایش ژنوم CRISPR-Cas9
عنوان انگلیسی مقاله: Synthetic multi-layer nanoparticles for CRISPR-Cas9 genome editing
مجله/کنفرانس: بررسی های دارورسانی پیشرفته - Advanced Drug Delivery Reviews
رشته های تحصیلی مرتبط: زیست شناسی، بیوتکنولوژی، پزشکی
گرایش های تحصیلی مرتبط: ژنتیک، علوم سلولی و مولکولی، بیوتکنولوژی پزشکی، ژنتیک پزشکی، میکروبیولوژی
کلمات کلیدی فارسی: ویرایش ژنوم، CRISPR-Cas9، بردارهای غیر ویروسی، نانوذرات چند لایه، تحول بالینی
کلمات کلیدی انگلیسی: Genome editing، CRISPR-Cas9، Non-viral vectors، Multi-layer NPs، Clinical transformation
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.addr.2020.03.001
دانشگاه: Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, PR China
صفحات مقاله انگلیسی: 60
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 16/038 در سال 2019
شاخص H_index: 278 در سال 2020
شاخص SJR: 4/163 در سال 2019
شناسه ISSN: 0169-409X
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14742
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Multi-layer NPs for CRISPR-Cas9 delivery

3- Novel building blocks for multi-layer NPs

4- Conclusions and perspective

References

بخشی از مقاله (انگلیسی)

Abstract

The clustered regularly interspaced short palindromic repeat (CRISPR) has great potential to revolutionize biomedical research and disease therapy. The specific and efficient genome editing strongly depends on high efficiency of delivery of the CRISPR payloads. However, optimization of CRISPR delivery vehicles still remains a major obstacle. Recently, various non-viral vectors have been utilized to deliver CRISPR tools. Many of these vectors have multi-layer structures assembled. In this review, we will introduce the development of CRISPR-Cas9 systems and their general therapeutic applications by summarizing current CRISPR-Cas9 based clinical trials. We will highlight the multi-layer nanoparticles (NPs) that have been developed to deliver CRISPR cargos in vitro and in vivo for various purposes, as well the potential building blocks of multi-layer NPs. We will also discuss the challenges in making the CRISPR tools into viable pharmaceutical products and provide potential solutions on efficiency and biosafety issues.

Introduction

In recent years, a series of programmable DNA nuclease-dependent genome editing techniques have been developed to enable efficient genetic manipulation in eukaryotes, particularly in mammalian cells [1-3]. These genome-editing techniques used for gene knock-out or knock-in predominately include meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR-Cas system [4-7]. These technologies all employ endonucleases to induce double strand breaks (DSB) at intended sites in the genome, followed by DSB repair through different mechanisms including non-homologous end joining (NHEJ), homologous recombination (HR), homology-mediated end joining (HMEJ) and microhomology-mediated end joining (MMEJ) [8]. Among these genome editing techniques, CRISPR-Cas9 is a gene editing system derived from the bacterial adaptive immune system, which is capable of combating the invasive viral genome under the guidance of short sequence RNA. CRISPR-Cas9 system is highly versatile because of its simplicity and high efficiency, moreover, any genome sequence theoretically can be edited by this system. In principle, the whole genome can be site-specifically modified at the genetic level in cells and tissues with CRISPR-Cas9 system, which further allows researchers to study the relationship between gene mutations and biological phenotypes. CRISPR-Cas9 system has driven innovative applications from basic biology research to biotechnology and medicine [9].