تشخیص چهره با وضوح پایین با استفاده از شبکه عمیق
ترجمه نشده

تشخیص چهره با وضوح پایین با استفاده از شبکه عمیق

عنوان فارسی مقاله: شبکه عمیق مشترک طبقه بند با اتلاف چند سلسله مراتبی برای تشخیص چهره با وضوح پایین
عنوان انگلیسی مقاله: Classifier shared deep network with multi-hierarchy loss for low resolution face recognition
مجله/کنفرانس: پردازش سیگنال. ارتباط تصویر - Signal Processing. Image Communication
رشته های تحصیلی مرتبط: کامپیوتر
گرایش های تحصیلی مرتبط: هوش مصنوعی، مهندسی الگوریتم ها و محاسبات، مهندسی نرم افزار
کلمات کلیدی فارسی: تشخیص چهره با وضوح پایین، شبکه عمیق مشترک دسته بند، از دست دادن چند سلسله مراتبی، ویژگی های واسط
کلمات کلیدی انگلیسی: Low-resolution face recognition، Classifier shared deep network، Multi-hierarchy loss، Intermediate features
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.image.2019.115766
دانشگاه: Shenzhen Key Lab. of Info. Sci&Tech/Shenzhen Engineering Lab. of IS&DCP, Department of Electronic Engineering/Graduate School at Shenzhen, Tsinghua University, China
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 3/809 در سال 2019
شاخص H_index: 72 در سال 2020
شاخص SJR: 0/562 در سال 2019
شناسه ISSN: 0923-5965
شاخص Quartile (چارک): Q2 در سال 2019
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 28
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14825
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست انگلیسی مطالب

Abstract


1- Introduction


2- Related work


3- The proposed method


4- Experiments


5- Conclusions


References

نمونه متن انگلیسی مقاله

Abstract


Face images in real Closed-Circuit Television (CCTV) are usually with low resolution, which remarkably deteriorates the performance of existing face recognition algorithms and hinders the application of face recognition. The main technical focus of this issue, matching between high-resolution (HR) and low-resolution (LR) face images has attracted significant attention. In order to better address this problem, we propose a Classifier Shared Deep Network with Multi-Hierarchy Loss (CS-MHL-Net) for low-resolution face recognition (LRFR) in this paper. Firstly, considering that contrastive loss and its variants are not conducive to the convergence of network and the reduction of discrepancy, a shared classifier between HR and LR face images is proposed to further narrow the domain gap between HR and LR by sharing the corresponding weights which can be seen as the class center. Secondly, to fully exploit intermediate features and loss constraints, we embed multi-hierarchy loss into intermediate layers, with the target of reducing the distances between HR and LR intermediate features after max pooling and avoiding the decreasing of accuracy caused by over-utilization of intermediate features. Experimental results on LFW and SCface demonstrate the effectiveness and superiority of the proposed method.


Introduction


Convolutional neural networks (CNNs) have achieved great success in many fields such as object classification [1, 2], scene understanding [3, 4], and action recognition [5]. Most importantly, CNNs have greatly improved the perfor mance of face recognition [6, 7, 8, 9] in recent years, which laid the foundation for face recognition in real applications. Current accuracy of the-state-ofthe-art face recognition algorithms has achieved more than 99% on the LFW database [10]. However, in reality, the qualities of images captured by surveillance videos are severely affected by different image resolutions. The recognition accuracy dropped severely when identifying extremely low-resolution images. In this paper, we will focus on improving the performance of low-resolution face recognition (LRFR) which has made progress and many more [11, 12, 13, 14, 15, 16, 17, 18]. This paper focuses on the matching problem between low-resolution (LR) face images and high-resolution (HR) face images. How to make the network extracting discriminative features of LR face images and narrowing the domain gap between HR and LR are the main directions to improve the performance of LRFR. There are many traditional works [14, 19, 20, 13, 21, 22, 23, 24, 18, 15, 25, 26] making contributions to the improvement of LRFR. Some of these works [14, 13, 21, 19] focus on transforming the LR images to HR images and promoting the recognition accuracy through the reconstructed LR images. The other works [19, 20, 22, 23, 24, 18, 15, 25, 26] pay more attention to the process of extracting the LR features and narrow the distances between LR features and HR features.

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

تشخیص چهره با وضوح پایین با استفاده از شبکه عمیق
نوشته های مرتبط
مقالات جدید
لوگوی رسانه های برخط

logo-samandehi

پیوندها