عملکرد حرارتی مبدل های حرارتی
ترجمه نشده

عملکرد حرارتی مبدل های حرارتی

عنوان فارسی مقاله: عملکرد حرارتی مبدل های حرارتی متراکم با پیوند نفوذی
عنوان انگلیسی مقاله: Thermal performance of diffusion-bonded compact heat exchangers
مجله/کنفرانس: مجله بین المللی علوم حرارتی – International Journal of Thermal Sciences
رشته های تحصیلی مرتبط: مهندسی مکانیک، مهندسی انرژی
گرایش های تحصیلی مرتبط: تبدیل انرژی، تاسیسات حرارتی و برودتی، سیستم های انرژی
کلمات کلیدی فارسی: مبدل حرارتی متراکم، پیوند نفوذی، مبدل حرارتی جریان معکوس
کلمات کلیدی انگلیسی: Compact heat exchanger، Diffusion bonding، Counter-flow heat exchanger
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.ijthermalsci.2020.106384
دانشگاه: Heat Pipe Laboratory, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
صفحات مقاله انگلیسی: 17
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 3.936 در سال 2019
شاخص H_index: 100 در سال 2020
شاخص SJR: 1.365 در سال 2019
شناسه ISSN: 1290-0729
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14959
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Nomenclature

۱٫ Introduction

۲٫ Compact heat exchanger theoretical model

۳٫ Experimental setup

۴٫ Results and discussion

۵٫ Conclusions

Declaration of competing interest

Acknowledgments

Appendix A Uncertainity analysis.

Appendix B. Supplementary data

Research Data

References

بخشی از مقاله (انگلیسی)

Abstract

This work presents an experimental and theoretical evaluation of the thermal performance of a square straight diffusion-bonded stainless steel compact heat exchanger. A one-dimensional steady-state thermal model was proposed to predict the thermal characteristics of the heat exchanger. To validate the model and to study the thermal behavior of the heat exchanger, an experimental test apparatus was developed. The heat exchanger was tested in several combinations of Reynolds ranging from 2600 to 7500, representing transition to turbulent regimes. The temperatures were varied from 70 C to 80 C for the water and from 25 C to 42 C for the air, at the inlet of the heat exchanger, respectively. A good agreement between the experimental data and the analytical model was obtained.

Introduction

In the petroleum and process industries, shell and tube or variations represent about 35% of the total of the heat exchangers used, being by far the most popular technology [1,2]. Although these types of heat exchangers are reliable and robust, their large volumes and footprint area make them not appropriate to be used in some applications [1,3]. On the other hand, compact heat exchangers are highly efficient, as their main characteristic is their large heat transfer surface area for a fixed volume. Although these devices have evolved considerably lately to new efficient solutions, they still deserve a great deal of research around the world. Compact heat exchangers have been developed for applications where requirements of small weight and space are mandatory, as encountered in aerospace, naval and automotive fields. In many heat exchangers especially the compact ones, hot and/or cold streams may flow through non-circular cross-section ducts, i.e., triangular or rectangular, among other geometries. The lengths of these ducts are usually small. The equipment may operate in several regimes, varying from laminar to turbulent. Advanced heat exchangers, like the printed circuit (PCHE), are compact devices characterized by a large heat transfer surface to volume ratio, which presents high effectiveness and low terminal temperature difference. Generally, the compact heat exchanger is fabricated from a large number of plates with channels, chemically etched or water–jet machined [4,5]. After a stacking process, a diffusion bonding technique is applied for fabricating the cores.