چارچوب مبتنی بر یادگیری عمیق
ترجمه نشده

چارچوب مبتنی بر یادگیری عمیق

عنوان فارسی مقاله: ThermoSim: چارچوب مبتنی بر یادگیری عمیق برای مدل سازی و شبیه سازی مدیریت منابع آگاه از حرارت برای محیط رایانش ابری
عنوان انگلیسی مقاله: ThermoSim: Deep Learning based Framework for Modeling and Simulation of Thermal-aware Resource Management for Cloud Computing Environments
مجله/کنفرانس: مجله سیستم ها و نرم افزار – Journal of Systems and Software
رشته های تحصیلی مرتبط: مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: رایانش ابری، هوش مصنوعی، مهندسی الگوریتم و محاسبات
کلمات کلیدی فارسی: رایانش ابری، مدیریت منابع، آگاه از حرارت، شبیه سازی، یادگیری عمیق، انرژی
کلمات کلیدی انگلیسی: Cloud Computing, Resource Management, Thermal-aware, Simulation, Deep Learning, Energy
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.jss.2020.110596
دانشگاه: School of Electronic Engineering and Computer Science, Queen Mary University of London, UK
صفحات مقاله انگلیسی: 29
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 4.018 در سال 2019
شاخص H_index: 94 در سال 2020
شاخص SJR: 0.550 در سال 2019
شناسه ISSN: 0164-1212
شاخص Quartile (چارک): Q2 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14994
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

۱٫ Introduction

۲٫ Related work

۳٫ ThermoSim framework

۴٫ Performance evaluation

۵٫ Summary and conclusions

Datasets

CRediT authorship contribution statement

Declaration of Competing Interest

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

Current cloud computing frameworks host millions of physical servers that utilize cloud computing resources in the form of different virtual machines. Cloud Data Center (CDC) infrastructures require significant amounts of energy to deliver large scale computational services. Moreover, computing nodes generate large volumes of heat, requiring cooling units in turn to eliminate the effect of this heat. Thus, overall energy consumption of the CDC increases tremendously for servers as well as for cooling units. However, current workload allocation policies do not take into account effect on temperature and it is challenging to simulate the thermal behaviour of CDCs. There is a need for a thermal-aware framework to simulate and model the behaviour of nodes and measure the important performance parameters which can be affected by its temperature. In this paper, we propose a lightweight framework, ThermoSim, for modelling and simulation of thermal-aware resource management for cloud computing environments. This work presents a Recurrent Neural Network based deep learning temperature predictor for CDCs which is utilized by ThermoSim for lightweight resource management in constrained cloud environments. ThermoSim extends the CloudSim toolkit helping to analyse the performance of various key parameters such as energy consumption, service level agreement violation rate, number of virtual machine migrations and temperature during the management of cloud resources for execution of workloads. Further, different energy-aware and thermal-aware resource management techniques are tested using the proposed ThermoSim framework in order to validate it against the existing framework (Thas). The experimental results demonstrate the proposed framework is capable of modelling and simulating the thermal behaviour of a CDC and ThermoSim framework is better than Thas in terms of energy consumption, cost, time, memory usage and prediction accuracy.

Introduction

Resource management is critical in cloud environment in which resource utilization, power consumption of servers, and storage play important roles. Provisioning and scheduling cloud resources is often based on availability, without considering other crucial parameters such as resource utilization or the server‘s thermal characteristics [1]. To realize this, a thermal-aware simulator for resource allocation mechanism is required [2]. The problem of allocating user workloads to a set of Physical Machines (PMs) or Virtual Machines (VMs) and allocating VMs on different server farms adhering to the terms of service as cited in Service Level Agreements (SLAs) and sustaining the Quality of Service (QoS) is stated as the service provisioning issue. Thus, cloud providers focus on developing energy-efficient approaches and policies [4]. Thermo-awareness in cloud refers to the consideration of thermal properties, such as thermal temperature of the host, CPU temperature, heat tolerance and thresholds, energy source (i.e. non-renewable vs. renewable), cooling considerations and mechanisms, cost etc. when dynamically managing cloud resources, scheduling and allocating workloads [20]. The explicit consideration of these properties can transform the way the cloud is managed and resources/PMs/VMs are dynamically allocated, leading to more energy-efficient computing and reduced carbon footprint [24] [35].