چکیده
کلید واژه ها
1. مقدمه
2. مرور مطالعات پیشین
2.1. درک هوش مصنوعی، عوامل و سیستم های هوشمند
2.2. اشتراک گذاری دانش: درک دانش سازمانی
2.3. تقاطع هوش مصنوعی و اشتراک گذاری دانش
2.4. عملکرد سازمانی
2.5. مدل مفهومی
3. روش شناسی
3.1. نمونه و جمع آوری داده ها
3.2. طرح پژوهش
3.3. تکنیک های تحلیلی
4. نتایج داده ها
5. بحث
5.1. چرا هوش مصنوعی برای فعالیت های دانش سازمانی مهم است؟
5.2. چگونه ادغام AI-KS به عملکرد سازمانی کمک می کند؟
6. مفاهیم و نتیجه گیری
6.1. مفاهیم نظری
6.2. پیامدهای صنعت
6.3. نتیجه گیری
منابع
Abstract
Keywords
1. Introduction
2. Literature review
2.1. Understanding artificial intelligence, intelligent agents and systems
2.2. Knowledge sharing: understanding organizational knowledge
2.3. The intersectionality of artificial intelligence and knowledge sharing
2.4. Organizational performance
2.5. Conceptual model
3. Methodology
3.1. Data sample and collection
3.2. Research design
3.3. Analytical techniques
4. Data results
5. Discussion
5.1. Why is AI important for organizational know-how activities?
5.2. How does AI-KS integration contribute to organizational performance?
6. Implications and conclusion
6.1. Theoretical implications
6.2. Industry implications
6.3. Conclusions
CRediT authorship contribution statement
Declaration of Competing Interest
References
چکیده
تکامل فرآیندها و عملکرد سازمانی در دهه گذشته تا حد زیادی توسط فناوری های پیشرفته مانند تجزیه و تحلیل داده ها، هوش مصنوعی (AI) و برنامه های کاربردی هوش تجاری امکان پذیر شده است. استفاده روزافزون از فناوریهای پیشرفته، اثربخشی، کارایی و بهرهوری را افزایش داده است، زیرا دانش موجود و جدید در یک سازمان به بهبود تواناییهای هوش مصنوعی ادامه میدهد. در نتیجه، هوش مصنوعی می تواند افزونگی ها را در فرآیندهای تجاری شناسایی کند و استفاده بهینه از منابع را برای بهبود عملکرد ارائه دهد. با این حال، عدم ادغام دانش موجود و جدید، تعیین ماهیت مورد نیاز دانش مورد نیاز برای توانایی هوش مصنوعی در بهبود عملکرد سازمانی را با مشکل مواجه میکند. از این رو، سازمانها همچنان با چالشهای تکراری در فرآیندهای تجاری، رقابت، پیشرفت فناوری و یافتن راهحلهای جدید در جامعهای که به سرعت در حال تغییر است، مواجه هستند. برای پرداختن به این شکاف دانش، این مطالعه از یک رویکرد تئوری مجموعه فازی مبتنی بر مفهومسازی هوش مصنوعی، اشتراک دانش (KS) و عملکرد سازمانی (OP) استفاده میکند. نتایج ما نشان میدهد که پیادهسازی فناوریهای هوش مصنوعی به تنهایی برای بهبود عملکرد سازمانی کافی نیست. در عوض، یک سیستم مکمل که ترکیبی از هوش مصنوعی و KS است، استراتژی عملکرد سازمانی پایدارتری را برای عملیات تجاری در یک جامعه دیجیتالی دائماً در حال تغییر فراهم میکند.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
The evolution of organizational processes and performance over the past decade has been largely enabled by cutting-edge technologies such as data analytics, artificial intelligence (AI), and business intelligence applications. The increasing use of cutting-edge technologies has boosted effectiveness, efficiency and productivity, as existing and new knowledge within an organization continues to improve AI abilities. Consequently, AI can identify redundancies within business processes and offer optimal resource utilization for improved performance. However, the lack of integration of existing and new knowledge makes it problematic to ascertain the required nature of knowledge needed for AI’s ability to optimally improve organizational performance. Hence, organizations continue to face reoccurring challenges in their business processes, competition, technological advancement and finding new solutions in a fast-changing society. To address this knowledge gap, this study applies a fuzzy set-theoretic approach underpinned by the conceptualization of AI, knowledge sharing (KS) and organizational performance (OP). Our result suggests that the implementation of AI technologies alone is not sufficient in improving organizational performance. Rather, a complementary system that combines AI and KS provides a more sustainable organizational performance strategy for business operations in a constantly changing digitized society.
Introduction
Artificial intelligence (AI) is a collection of information communication technologies (ICTs) that imitate human intelligence for the primary purpose of improving jobs, creating greater efficiencies, and driving economic growth (Arakpogun et al., 2021). Knowledge, on the other hand, is the key component that enables AI innovations adding value to intelligent agents and systems (Robbins, 2019). The intelligent agents (IA) that results from AI activities hold numerous know-hows that are required to improve productivity and create new knowledge for business processes. AI-driven approach for instance is a strategy whereby IA enable the accessibility of valuable information via technology-driven platforms for employees. Furthermore, IA has a wide range of capacities in contributing to organization’s approaches for innovation through strategic knowledge activities. This renaissance is driven by evidence that competitive advantages in the industries are more limited and significant for growth (Liebowitz, 2006).
Conclusions
While the advancement of AI-enabled cutting-edge technologies has helped to improve business operations and performance, many organizations continue to face reoccurring challenges in their business processes. The main reason for these challenges hinges on the point that organizations often find it difficult to integrate existing and new knowledge into the learning process of AI. This creates a lack of an enabling environment and causes organizations to struggle with the development and implementation of intelligent systems, the process of distribution, retention, and knowledge re-use. As such, the benefits of AI to organizational performance become limited. To address this knowledge gap, this study applies a fuzzy settheoretic approach underpinned by the conceptualization of AI, KS, and OP. We then conduct data collection using an online survey. The data analysis suggests that the implementation of AI technologies alone is not sufficient to improve organizational performance. Rather, the association of knowledge activities such as lessons learned from completed projects with AI technologies contributes to performance and efficiency. This study further discovered that knowledge activities are not considered as a key factor for improving performance,making organizations make limited investments in implementing robust knowledge systems. We draw on our findings to recommend to organizations the significant contribution of an AI-KS system towards a more sustainable organizational performance strategy for business operations in a constantly changing digitized society. By so doing, the paper contributes to the existing literature in knowledge management by identifying AI technologies as a significant tool that promotes knowledge activities in an organization.