چکیده
مقدمه
توضیحات سیستم
تحلیل ترمودینامیکی
تجزیه و تحلیل انرژی
نتایج و بحث
نتیجه گیری و پیشنهادات
منابع
Abstract
Introduction
System description
Thermodynamic analysis
Energy analysis
Results and discussion
Conclusions and recommendations
References
چکیده
در مطالعه حاضر، یک نیروگاه هیبریدی حرارتی خورشیدی (STPP) توسعه یافته با یک کلکتور جدید LS-3 معرفی و با تجزیه و تحلیل اگزرژی مورد تجزیه و تحلیل قرار گرفته است. نتایج با یک STPP هیبریدی در مورد پایه مقایسه شده است. تجزیه و تحلیل انرژی و اگزرژی نیز برای درک عملکرد میدان های خورشیدی انجام می شود. در طراحی سیستم توسعهیافته، یک میدان جمعکننده سهموی جدید برای افزایش دمای بخار تولید شده وارد شده به توربین بخار اضافه میشود. تجزیه و تحلیل نتایج برای میدانهای خورشیدی نشان میدهد که تلفات انرژی و اگزرژی در زیرسیستم کلکتور گیرنده میدان نفتی کلکتور ترمینول VP-1 بیشتر از زیرسیستمهای دیگر است. حداکثر تخریب اکسرژی سیستم در دیگ کمکی و سپس در میدان های کلکتورهای خورشیدی رخ می دهد. همچنین، نتایج مقایسه ای سیستم جدید توسعه یافته با حالت پایه نشان می دهد که تخریب اکسرژی از 6.61 مگاوات به 3.1 مگاوات کاهش می یابد و راندمان اگزرژی برای STPP توسعه یافته با کلکتورهای LS-3 و STPP به شکل مورد پایه، به ترتیب.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
In the present study, a hybrid solar thermal power plant (STPP) developed with a new LS-3 collector is introduced and analyzed by the exergy analysis. The results are compared with a hybrid STPP in the base case. Energy and exergy analyses are also carried out to understand the performance of the solar fields. In the developed system design, a new parabolic trough collector field is added to increase the temperature of generated steam entering the steam turbine. The analysis of results for the solar fields shows that the energy and exergy losses in the collector–receiver subsystem of the Therminol VP-1 oil collector field are more than the other subsystems. The maximum exergy destruction of the system occurs in the auxiliary boiler and then in the solar collectors’ fields. Also, comparative results of the newly developed system with the base case show that exergy destruction decreases from 6.61 MW to 3.1 MW, and exergy efficiency increases from 7% to 11.97% for developed STPP with LS-3 collectors and STPP in the form of the base case, respectively.
Introduction
During recent decades, the signifcant growth of the global energy demand has led to global warming and high consumption of fossil fuels which caused compulsory usage of renewable energy resources to cover the world energy demand and attain sustainable energy in the future. Among diferent energy resources, solar energy is highly abundant and does not restrict to the geographic region, i.e., it possesses the highest potential compared to other renewable sources. As far as the equipment used in solar thermal power plants, optical concentration devices are essential options for power generation. In the early 80s, the SEGs plants were the frst concentrating solar power plants (CSP) established in California’s Mojave Desert. The CSP technologies are categorized into four systems: linear Fresnel refector systems (LF), parabolic trough collectors (PTC), central receiver systems (CRS), and dish/engine systems (DE). For electricity production in CSP plants, frst, the concentrators focus sunlight into a receiver. Then, as the working oil temperature increases to a high temperature set-point, this heated oil delivers to a steam turbine connected to the generator. Among the CSP technologies, the most conventional system is PTCs which widely infuence the global market of solar plants [1–4]. Exergy analysis is the stem of the second law of thermodynamics (SLT), which effectively enhances energy resource usage efciency while recognizing the reasons, variety, locations, and values of inefciencies. The assessment of efciencies, generally, is performed via the exergy analysis rather than energy analysis. Exergy analysis is often regarded as a measuring criterion to become close to the ideal form of a thermodynamic process. Therefore, using exergy analysis for solar thermal power plants is a powerful tool that helps defne the losses and enhance efciency [5–7].
Conclusions
The purpose of the present study is to do energy and exergy analyses of the 500 kW hybrid STPP developed with the LS-3 collector and to compare the results with a 500 kW hybrid STPP in the base case. The STPP is investigated in the view of the energy and exergy analyses in order to improve the total performance of system.