چکیده
مقدمه
مرور مطالعات پیشین
روش ها
نتایج
بحث
روش ها
منابع
Summary
Introduction
Literature review
Materials and methods
Results
Discussion
Methods
Data and code availability
References
چکیده
این مقاله یک الگوریتم انتخاب مکان هواشناسی را برای تعیین کمیت پتانسیل تولید برق از پیکربندیهای طراحی خورشیدی شناور در آبهای آلپ در سوئیس توسعه میدهد. با استفاده از الگوهای تقاضای بازار برق اروپا، ما پتانسیل فنی و اقتصادی 82 سایت خورشیدی شناور با ارتفاع بالا را که با نیروگاه های آبی سوئیس موجود است، برآورد می کنیم. ما نشان میدهیم که مقدار انرژی خورشیدی تابش شده در آبهای سوئیس در ارتفاعات میتواند کل تقاضای برق ملی را برآورده کند در حالی که به طور قابلتوجهی انتشار کربن را کاهش میدهد و کمبودهای عرضه/تقاضای فصلی را برطرف میکند. ما یک نقشه جهانی می سازیم که مکان هایی را در هر قاره پوشانده است، جایی که خورشیدی شناور در ارتفاع بالا می تواند برق کم کربن و کم مصرف را فراهم کند. نتایج ما انگیزه قانعکنندهای را برای توسعه تاسیسات خورشیدی شناور آلپ ارائه میکند. با این حال، هنوز به نوآوری های قابل توجهی نیاز است تا انرژی خورشیدی شناور را با عملیات های موجود در نیروگاه آبی یا ذخیره سازی انرژی کم هزینه پیوند دهد. همانطور که صنعت بالغ می شود، فناوری خورشیدی شناور در ارتفاع بالا می تواند به منبع برق با ارزش بالا و کربن کم تبدیل شود.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Summary
This paper develops a meteorological site selection algorithm to quantify the electricity generation potential of floating solar design configurations on alpine water bodies in Switzerland. Using European power market demand patterns, we estimate the technical and economic potential of 82 prospective high-altitude floating solar sites co-located with existing Swiss hydropower. We demonstrate that the amount of solar energy radiating from high-altitude Swiss water bodies could meet total national electricity demand while significantly reducing carbon emissions and addressing seasonal supply/demand deficits. We construct a global map overlaying sites on each continent where high-altitude floating solar could provide low-carbon, land-sparing electricity. Our results present a compelling motivation to develop alpine floating solar installations. However, significant innovations are still needed to couple floating solar with existing hydropower operations or low-cost energy storage. As the industry matures, high-altitude floating solar technology could become a high-value, low-carbon electricity source.
Introduction
Global climate change requires increased urgency and attention in the energy sector to develop low-carbon electricity supply options that can dramatically reduce carbon dioxide (CO2) emissions (Hansen et al., 2016). Across Europe, small countries without large available land resources have developed stringent policies to decarbonize their power sectors, whereas also operating in a space where land is limited for greenfield electricity system development.
In particular, Switzerland has committed to transitioning to a clean, net-zero emissions energy system by 2050. Phasing out nuclear power will create an electricity supply gap of nearly 24.4 TWh, implying that without changes in electricity demand, countries such as Switzerland must look to alternative generation options (Swiss Federal Office of Energy, 2018). The number of choices is few – hydropower is facing financial and climate-induced risk owing to hydrologic variability and uncertainty to drought, utility-scale solar requires large land areas, distributed generation requires public buy-in and acceptance, and wind turbines are often located offshore. Therefore, high-altitude land areas could offer promising alternatives to meet carbon goals, reduce the land-use intensity of energy, and take advantage of existing electricity infrastructure, which is costly and often requires long lead-times to build. These systems can also allow existing hydropower to continue to provide flood control or other services to minimize harm from extreme hydrologic events.
Conclusions
The prospect of integrating floating solar panels with hydropower plants is especially relevant as climate change has created uncertainty in future water resources for hydro utilities (Beniston, 2012; Schmitt et al., 2019). Hybrid solar/hydro systems can help stabilize production and mitigate climate risks, with complementary use cases in peaking plants, load balancing, energy arbitrage, and ancillary grid services. Furthermore, floating solar output could be used to compensate for times when water storage levels are low, providing valuable relief for hydro operators. This would result in less reliance on imports during the filling season and increased savings of hydro capacity for the winter. In addition, reduced evaporation rates on hydro reservoirs with floating solar implies further valuable water savings. Hybrid integration of floating solar with hydropower is still at an early stage (World Bank Group, 2019).