چکیده
مقدمه
حوزه مطالعه
نتایج و بحث
نتیجه گیری
منابع
Abstract
Introduction
Study Area
Results and Discussion
Conclusion
References
چکیده
ریزشبکه یک جایگزین مقرون به صرفه و عملی برای ارائه سناریوهای الکتریکی فعلی و آینده است زیرا نرخ تخلیه سوخت معمولی بالا است. بهینه سازی اجزای ریزشبکه، از جمله باتری ها، برای تجزیه و تحلیل هزینه کل سیستم و قابلیت اطمینان ضروری است. در کار حاضر، یک ریزشبکه روستایی برای یکپارچه سازی سیستم های بادی، خورشیدی، دیزل ژنراتور و باتری برنامه ریزی شده است. منطقه دورافتاده اوتاراکند (هند) برای تحلیل فنی-اقتصادی و امکان سنجی ریزشبکه پیشنهادی انتخاب شد. هدف برنامه ریزی شده مربوط به تعیین کمترین هزینه در واحد انرژی و دوام مدل است. الگوریتم بهینه سازی در موارد مختلف برای بررسی اثربخشی آن برای برنامه ریزی بهینه اعمال می شود. چارچوب پیشنهادی را می توان به عنوان بخشی از مدیریت جامع انرژی در نظر گرفت. نتایج شبیه سازی پتانسیل بالای صرفه جویی را نشان می دهد.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
The microgrid is an economical and feasible alternative to provide the electrification of current, and future scenarios as the depletion rate of conventional fuel are high. It is essential to optimize microgrid components, including batteries, to analyze the total system cost and reliability. In the present work, a rural microgrid is planned to integrate wind, solar, diesel generator, and battery systems. The remote region of Uttarakhand (India) selected for the techno-economic and feasibility analysis of the proposed microgrid. The planned objective is concerned with determining the least per unit cost of energy and viability of the model. The optimization algorithm is applied under different cases to check its effectiveness for optimal planning. The suggested framework can be considered as part of comprehensive energy management. The simulation results indicate the high potential of saving.
Introduction
Dependence on the electrical power system significantly increases over the last few decades. Electricity is the major contributing factor for the sustainable development of humanity. Conventional energy resources are depleting very fast. The growing energy demand cannot be accomplished using only traditional energy resources [1]. Clean energy resources are an option to reduce the burden on conventional fuels. These are economical, greener, resilient, and reliable sources of energy. Microgrids formed by integrating renewable resources in the area can provide a reliable supply of energy to the rural and urban communities [2]. The microgrid is the grouping of traditional power generators, renewable sources, and storage batteries to supply the area’s energy demand. These types of the framework can connect with grid or work in standalone mode [3]. For the electrification of the remote regions, standalone mode of operation is widely preferred due to its low energy cost and difficulty in developing grid infrastructure. The grid-connected method extensively favors urban areas. At peak hours, electricity is provided by renewable resources and battery, and when the power tariff is low, it is supplied by the grid. The grid-connected mode of operation lowers the overall energy cost, improves power supply efficiency, and increases the penetration of renewable energy resources [4]. Diesel generators (DG) are used as the backup power source to provide uninterrupted supply. DG with renewable resources confirms the reliability in the power supply of the area. The hybrid energy system is molded by the merger of various renewable resources. The key goal of developing a hybrid energy model is to provide a cost-effective energy solution for rural residents. The planning of the hybrid energy model involves cautious and supportive algorithms to maximize customers’ benefits and productivity [5].
Conclusion
In an emerging nation like India, a significant portion of the population lacks reliable electricity access. The proposed work analyzed such areas and suggested the optimal planning for the rural population’s electrification. The microgrid model with the optimal design is designed by a combination of energy resources in the locality. The energy model investigated the rural region of Uttarakhand state of India. Four cases have been discussed for finding the optimal cost of energy using the particle swarm optimization algorithm. The model suggests the optimum number of energy resources for the area’s reliable electrification. According to the findings, the net present cost of microgrid operation in grid-connected mode is $2,100,345.98, with per unit cost of energy is $ 0.25, which is least compared to other modes of operation. The intermittency of renewable sources is analyzed for the optimum case by varying 10 to 40% of total production. The finding indicates that maximum renewable penetration is achieved when the energy is 10%. It is necessary to reduce the total energy cost the participation of renewable resources increased. The suggested model can improve microgrid planning’s economic and technical aspects with lower deficiency of demand management.