چکیده
مقدمه
سیستم ریزشبکه
سیستم مدیریت انرژی
نتایج و بحث
نتیجه گیری
منابع
Abstract
Introduction
Microgrid system
Energy management system
Results and discussion
Conclusion
References
چکیده
در سالهای اخیر، سیستم قدرت به ریزشبکهها تبدیل شده است، که جیبهای کوچکی از موجودیتهای مستقل هستند. واحدهای تولید پراکنده، به هم پیوسته، بارها و واحدهای ذخیره انرژی، یک سیستم ریزشبکه معمولی را تشکیل می دهند. افزایش بازده انرژی این واحدها در ریزشبکه ها روز به روز محبوبیت بیشتری پیدا می کند. تولیدات تجدیدپذیر به دلیل رفتار تصادفی خود باعث عدم تعادل در سیستم قدرت می شود که نیاز به مدیریت انرژی ریزشبکه دارد. برای حل این مسائل، انواع رویکردهای جدید در ادبیات بررسی شده است. برای ریزشبکه مستقل در این تحقیق، مدیریت انرژی و مکانیسم کنترل کارآمد اتخاذ شده است. یک سیستم فتوولتائیک، یک توربین بادی و یک دستگاه ذخیره انرژی باتری این ریزشبکه مستقل را تشکیل میدهند. پایداری قدرت سیستم هیبریدی توسط یک کنترلر پیچیده تضمین می شود. هدف اصلی این مطالعه تنظیم مبدل دو طرفه DC/DC (DBC) است که باتری لیتیوم یونی را به گذرگاه DC ریزشبکه مستقل متصل میکند. این مقاله توسعه یک سیستم تولید برق بادی/فتوولتائیک را برای بار، و همچنین تکنیکهای MPPT مانند آشفتگی و مشاهده (P&O) توصیف میکند. سیستم شبیه سازی شده و نتایج با استفاده از تکنیک MPPT ارائه شده است. در روش پیشنهادی نیازی به مدل قدرت خاصی نیست. فقط داده های سیستم قدرت و ولتاژ توسط DBC استفاده می شود. یک سیستم ریزشبکه مستقل با استفاده از MATLAB شبیه سازی شد.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
In recent years, the power system has been evolved into microgrids, which are little pockets of self-contained entities. Different distributed, interconnected generation units, loads, and energy storage units make up a typical microgrid system. The increased energy efficiency of these units on microgrids is gaining popularity day by day. Because of their stochastic behavior, renewable generation causes an imbalance in the power system, which needs microgrid energy management. To solve these issues, a variety of novel approaches have been explored in the literature. For the stand-alone microgrid in this research, efficient energy management and control mechanism is adopted. A photovoltaic system, a wind turbine, and a battery energy storage device make up this stand-alone microgrid. The power stability of the hybrid system is ensured by a sophisticated controller. The main purpose of this study is to regulate the DC/DC bidirectional converter (DBC), which connects the Li-ion battery to the DC bus of the stand-alone microgrid. This paper describes the development of a wind/photovoltaic power generation system to the load, as well as MPPT techniques like perturb and observe (P&O). The system is simulated and the results are presented using MPPT techniques. There is no requirement for a specific power model in the suggested method. Only power and voltage system data are used by DBC. A stand-alone microgrid system was simulated using MATLAB.
Introduction
Renewable energies are the new trend in power production with their clean and environmentally friendly power. Because of the high dependence on weather and climate conditions, in numerous cases, the best possible system is the renewable energy hybrid system (based on renewable sources) with energy storage systems [1]. The hybrid microgrids are generally used to provide electricity for multiple consumers like homes or farming areas that are out of grid extension based on smart control. A microgrid consists of loads, energy storage systems, small-scale production systems, and a control center [2]. Microgrids are used in communication systems for real-time management [3]. Microgrid (MG) when joined to a network can also operate in isolation. Depending on the sort of energy source, the microgrid can be categorized as alternating current (AC), direct current (DC), or hybrid AC/DC. Microgrid energy management systems face difficulties in managing renewable energy sources like solar power and wind.
Conclusion
This paper has reviewed an understanding of the issues and possibilities associated with integrating solar PV and wind energy sources for energy production. The key obstacle for the stand-alone system is the intermittent existence of solar PV and wind sources. By integrating the two resources into an optimum microgrid, the DC bus or AC bus with an energy storage system as a backup system, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This report presents the hybrid microgrid system, composed of multiple renewable energy resources. These renewable energy resources include a 2-kW solar plant, 2 kW for the wind turbine, and 2 kW provided using the battery system. The output voltage of each system has been connected to the DC bus to provide 400 V at the DC bus. Inverter input is powered by DC bus bar voltage. The full-bridge inverter converts direct current (DC) to alternating current (AC) and is controlled in an open loop. The system has been tested with a variety of wind speeds and PV panel irradiance values. The results show the robustness of the proposed system in synchronizing the AC output voltage, frequency, and amplitude of the load AC. The system has produced the desired outcomes. The voltages at the converters' outputs, despite variable variations (solar irradiation and wind speed), were observed as a result of the analysis to quickly reach the reference voltage of 400 V and remain stable at this value, thanks to the proposed control algorithms (MPPT-PID) proposed on the DC bus bar side.