چکیده
مقدمه
مطالعات مرتبط
طرح محلی سازی
ارزیابی
نتیجه گیری و کارهای آینده
منابع
Abstract
Introduction
Related works
Localization scheme
Evaluation
Conclusions and future works
Reference
چکیده
با سیستمهای حسگر توزیعشده که معمولاً در شبکههای حسگر بیسیم یا اینترنت اشیا یافت میشوند، دانستن دادههای حسگر مکان از آن بهخصوص در سناریوهایی با حسگرهای موبایل بسیار مهم است. رویکردهای مبتنی بر محلیسازی مونت کارلو بدون برد بسیار کارآمد هستند و به سختافزار اضافی فراتر از رادیو نیاز ندارند، که به هر حال در گرههای حسگر یافت میشود. با این حال، استفاده از دادههای حسگر حرکتی مبتنی بر محاسبه مرده، دقت تخمینهای مکان را تا حد زیادی بهبود میبخشد و استحکام را در برابر عوامل معیوب یا مخرب در شبکه افزایش میدهد. در این کار، ما محلیسازی مونت کارلو به کمک سنسور تقویتشده استحکام (RESA-MCL) را پیشنهاد میکنیم. ما اثربخشی RESA-MCL را با توجه به دقت محلی سازی عمومی و استحکام در برابر حملات مخرب یا گره های بدکار نشان می دهیم. برای ارزیابی و مقایسه طرح ما با رویکردهای موجود، ما سه مدل حمله را بر اساس گرههای لنگر مخرب معرفی میکنیم. عملکرد RESA-MCL تحت این مدلهای حمله ارزیابی میشود و رویکرد ما از طرحهای موجود در محیطهای تراکم گره لنگر بسیار کم و بالاتر بهتر عمل میکند و به خطای محلیسازی 0.5 با چگالی لنگر 0.33 دست مییابد. به طور کلی، RESA-MCL از رویکردهای قابل مقایسه در تراکم لنگر پایین تر با خطای محلی سازی تا 48 درصد کمتر عمل می کند و مقاومت شدیداً افزایش یافته ای را در برابر حملات با حداقل سربار محاسباتی نشان می دهد.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
With distributed sensor systems commonly found in Wireless Sensor Networks or the Internet of Things, knowing the location sensor data was acquired from is very important, especially in scenarios with mobile sensors. Range-free Monte Carlo Localization based approaches are very energy efficient and do not require additional hardware beyond a radio, which is found on sensor nodes anyways. However, the use of motion sensor data based dead reckoning greatly improves the accuracy of location estimates and increases robustness against faulty or malicious actors within the network. In this work, we propose Robustness Enhanced Sensor Assisted Monte Carlo Localization (RESA-MCL). We show RESA-MCL’s effectiveness with respect to both general localization accuracy and robustness against malicious attacks or malfunctioning nodes. To evaluate and compare our scheme against existing approaches, we introduce three attack models based on malicious anchor nodes. The performance of RESA-MCL is evaluated under these attack models and our approach outperforms existing schemes in both very low and higher anchor node density environments, achieving a localization error of 0.5 with an anchor density of 0.33. Overall, RESA-MCL outperforms comparable approaches at lower anchor densities with up to 48% lower localization error and demonstrates strongly increased robustness against attacks with minimal computational overhead.
Introduction
In today’s world, more and more Internet of Things (IoT) devices with various types of sensors, as well as Wireless Sensor Networks (WSN), are getting deployed to cover a wide range of scenarios, from smart homes [9], decentralized initiatives by volunteers for measuring air quality [2], [17], over industrial uses [10] to wildlife monitoring [16]. To make sense of the gathered data, it is important to know where it was measured. In the case of, for example, a WSN with fixed nodes, the installation points of each sensor can be noted, but many applications rely on mobile sensors, which makes it necessary for sensor nodes to be able to determine their locations dynamically.
The most common approach to this is the use of the Global Positioning System (GPS). However, the use of GPS has a number of disadvantages. The sensors are relatively costly and consume high amounts of power. They also rely on being able to receive satellite signals, which makes indoor operations impossible and also leads to reduced accuracy in certain outdoor environments. To mitigate the first two points, a solution is to equip only a small subset of nodes with GPS sensors. These nodes then act as so-called seed or anchor nodes, which assist other nodes in localizing themselves. Instead of using mobile anchor nodes equipped with GPS sensors, the use of static anchors with preset locations is also a common approach.
Conclusions and future works
In this work, we introduce RESA-MCL, a novel MCL-based, range-free, security-aware localization algorithm for WSNs and the IoT that strongly outperforms comparable approaches both in safe situations and under attack by malicious anchor nodes. Without attacks, it outperforms a recent comparable approach with 48% lower localization error at similar anchor densities. RESA-MCL employs three techniques to both enhance general localization accuracy and robustness against malicious anchor nodes. Localization accuracy is enhanced both in very sparse networks with low numbers of anchor nodes and in very dense networks with high numbers of anchor nodes.