چکیده
مقدمه
روشهای محاسباتی
روش DPD
مدل رانش نفوذ
نتایج و بحث
کوئنچ یک مرحله ای
کوئنچ دو مرحله ای
مقایسه با مشاهدات تجربی موجود
نتیجه گیری
منابع
Abstract
INTRODUCTION
COMPUTATIONAL METHODS
DPD Method
Drift-diffusion Model
RESULTS AND DISCUSSION
One-step Quench
Two-step Quench
Comparison with Existing Experimental Observations
CONCLUSIONS
REFERENCES
چکیده
کنترل مورفولوژی اختلاط نقش مهمی در تولید برق فتوولتائیک ایفا می کند، با این حال این اثر خاص بر عملکرد دستگاه مبهم باقی مانده است. در اینجا، ما از روشهای محاسباتی برای ترسیم ویژگیهای فتوولتائیک سلولهای خورشیدی پلیمری لایهای ناهمگون با مورفولوژیهای اختلاط قابل تنظیم استفاده کردیم. راهبردهای کوئنچ یک مرحله ای و کوئنچ دو مرحله ای برای تنظیم مورفولوژی اختلاط توسط اثرات ترمودینامیکی و جنبشی پیشنهاد شدند. محاسبات برای خاموش کردن یک مرحلهای نشان داد که تعدیل عرضهای سطحی و زبری سطحی میتواند عملکرد فتوولتائیک سلولهای خورشیدی پلیمری لایهای ناهمگون را ارتقا دهد. کوئنچ دو مرحلهای میتواند یک بافر را در دمای پایینتر قبل از خاموش کردن جنبشی فراهم کند، که منجر به تشکیل جزایر در مقیاس کوچک متصل به رابط و افزایش بیشتر عملکرد فتوولتائیک میشود. اکتشافات ما توسط شواهد تجربی اخیر پشتیبانی می شود و پیش بینی می شود که طراحی مواد فتوولتائیک با عملکرد بهینه را هدایت کند.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
The mixing morphology control plays a crucial role in photovoltaic power generation, yet this specific effect on device performances remains elusive. Here, we employed computational approaches to delineate the photovoltaic properties of layered heterojunction polymer solar cells with tunable mixing morphologies. One-step quench and two-step quench strategies were proposed to adjust the mixing morphology by thermodynamic and kinetic effects. The computation for the one-step quench revealed that modulating interfacial widths and interfacial roughness could significantly promote the photovoltaic performance of layered heterojunction polymer solar cells. The two-step quench can provide a buffer at a lower temperature before the kinetic quenching, leading to the formation of small-length-scale islands connected to the interface and a further increase in photovoltaic performance. Our discoveries are supported by recent experimental evidence and are anticipated to guide the design of photovoltaic materials with optimal performance.
Introduction
Polymer solar cells (PSCs) are a kind of potential clean-energy technology, which holds promise for manufacturing lightweight and highly flexible devices such as portable electronic products and building-integrated photovoltaics.[1−5] Although the power conversion efficiency was dramatically improved recently, it has not yet broken through the requirements of commercial markets due to the limitation on the mechanism of charge carrier generation and transport.[6,7] To date, a considerable effort has been devoted to creating novel π-conjugated polymers to improve photovoltaic performance. In contrast, understanding the morphology effect on PSC performance and formulating basic rules that guide morphology optimization need to be further enhanced.
Optimizing the morphology is indispensable for the successful preparation of PSCs with outstanding performance.[8−12] The PSC performance can be quantitatively correlated with phase purity and Flory-Huggins parameters.[13] Insufficient phase separation in PSCs can lead to performance deteriorations. However, a larger repulsion between donors and acceptors can lead to over-purification of mixed domains and decreased PSC performance.[14] For example, Ade et al. observed that the average power conversion efficiency shows a substantial drop as the composition of the amorphous mixed domains is below the percolation threshold.[15] Ye et al. recently found that such a problem can be resolved by kinetically quenching the mixed domains to an optimal composition close to the percolation threshold.[16] Despite this, fundamental guidelines are still required to optimize PSC performances with optimal mixing morphologies. Combining thermodynamic effects and kinetic controls can assist the design of heterojunctions with varied mixing morphologies.[16] The thermodynamics can drive the phase separation of donors and acceptors in PSCs, and the quench by kinetic control can "lock-in" instantaneous phase-separated morphologies. Recent attention has been paid to the stability of such mixing morphologies.[17−20] However, little is known about the kinetic route to control mixing morphologies and the influence of mixing morphologies on PSC performances. Quantifying the impact of mixing morphology on device performance by developing kinetic control rules is the key to optimizing the heterojunction structure and promoting power conversion efficiency.
Conclusion
The DPD method, coupled with the drift-diffusion model, was employed to study the mixing morphology effect on the photovoltaic performance of layered heterojunction PSCs. We performed an in silico layer inter-diffusion experiment and designed two quench approaches to regulating the mixing morphology of layered heterojunctions, that is, one-step quench and two-step quench. In the one-step quench, the layered heterojunction with intermediate interfacial width exhibits an optimal photovoltaic performance. We further enhanced the power conversion efficiency of the layered heterojunction by modulating the mixing morphology with a two-step quench method. We discovered that the interfacial width, interfacial roughness, and small-length-scale island structures formed within acceptor- and donor-rich domains combinedly affect the power conversion efficiency. Our work delineates the effect of quenching processes on photovoltaic performance, which could be beneficial to the design and quantitative optimization of active layers.