چکیده
1 مقدمه
2 مرور مطالعات پیشین
3 روش شناسی تحقیق
4. بحث
5. نتیجه گیری
منابع
Abstract
1 Introduction
2 Literature review
3 Research methodology
4 Discussion
5 Conclusions
References
چکیده
هدف این مقاله درک تاثیر تجزیه و تحلیل داده های بزرگ بر زنجیره تامین خرده فروشی است. برای انجام این کار، زمینه خود را برای انتخاب بهترین شیوه های کلان داده از میان گزینه های موجود بر اساس عملکرد زنجیره تامین خرده فروشی تنظیم کردیم. ما از TODIM (مخفف در پرتغالی برای تصمیم گیری چند معیاره تعاملی) برای انتخاب بهترین ابزارهای تجزیه و تحلیل کلان داده از میان نه روش شناسایی شده (علم داده، شبکه های عصبی، برنامه ریزی منابع سازمانی، رایانش ابری، یادگیری ماشین، داده ها) استفاده کرده ایم. استخراج، RFID، بلاک چین و اینترنت اشیا و هوش تجاری) بر اساس هفت معیار عملکرد زنجیره تامین (ادغام تامین کننده، ادغام مشتری، هزینه، استفاده از ظرفیت، انعطاف پذیری، مدیریت تقاضا، و زمان و ارزش). یکی از درک جالب از این مقاله این است که اکثر شرکتهای خردهفروشی در دوراهی بین وفاداری مشتری و هزینه در حین اجرای شیوههای کلان داده در سازمان خود قرار دارند. این مطالعه تسلط شیوههای کلان داده را در سطح زنجیره تامین خردهفروشی تحلیل میکند. این به شرکت های خرده فروشی تازه در حال ظهور کمک می کند تا بهترین عملکرد کلان داده را بر اساس اهمیت و تسلط معیارهای عملکرد زنجیره تامین ارزیابی کنند.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
This paper aims to understand the impact of big data analytics on the retail supply chain. For doing so, we set our context to select the best big data practices amongst the available alternatives based on retail supply chain performance. We have applied TODIM (an acronym in Portuguese for Interactive Multi-criteria Decision Making) for the selection of the best big data analytics tools among the identified nine practices (data science, neural networks, enterprise resource planning, cloud computing, machine learning, data mining, RFID, Blockchain and IoT and Business intelligence) based on seven supply chain performance criteria (supplier integration, customer integration, cost, capacity utilization, flexibility, demand management, and time and value). One of the intriguing understandings from this paper is that most of the retail firms are in a dilemma between customer loyalty and cost while implementing the big data practices in their organization. This study analyses the dominance of the big data practices at the retail supply chain level. This helps the newly emerging retail firms in evaluating the best big data practice based on the importance and dominance of supply chain performance measures.
Introduction
Huge competition and fluctuating demand patterns increase the data generation in the supply chain (SC) (Arunachalam et al., 2018). This pushes the companies to adopt the supply chain analytics (SCA) so as to gain competitive advantage (Davenport and O’dwyer, 2011; Shafiq et al., 2020). Adopting the SCA practices improves the accuracy and overall performance of the SC. As firms are already using statistical methods for decision making in one way or another, some practitioners are against the implementation of SCA because of the time and cost incurred in adoption of these solutions (Kusiak, 2006; Trkman et al., 2010). Implementing SCA in businesses is a tricky task because of the uncertainty associated with the data and the changing requirements of the customer (Handfield and Nicholas 2004; Liberatore & Luo, 2010; Huner et al., 2011; LaValle et al., 2011; Manyika et al., 2011).
Conclusions
The MCDM methods support the decisions given in the business, which contains many criteria that have to be satisfied to make any decision. The uniqueness of this study for the best big data practice to improve the overall performance of the supply chain is that, the qualitative and quantitative factors with different scales are combined in the same technique, also we need to know the risk concept in the analysis and last, TODIM method is applied to this problem. Although there are many decision-making methods that are based on complex calculations, the proposed framework can be applicable easily by the companies in various industries in order to make decisions based on many criteria. To get more accurate data and efficient decisions in the decision-making process, we can implement fuzzy logic to the TODIM method and Pythagorean Fuzzy TODIM so that we can reduce uncertainty and ambiguity in the decisions taken by the companies. The criteria chosen in this study are relevant to the Indian retail supply chain. These criteria can vary across the industries. Hence, the dominance values change with criteria which are different for different industries like for some industry cost may be the main criteria but for others demand management is the main criteria, so it varies from industry to industry. Hence, obtained priorities may not be generalized.