چکیده
مقدمه
روش های مدل سازی عددی و تایید
نتایج و بحث
خلاصه و نتیجه گیری
منابع
Abstract
Introduction
Numerical modelling procedures and verification
Results and discussion
Summary and conclusions
References
چکیده
پاسخ مکانیکی یک کالورت فولادی موجدار مدفون، که به دلیل خوردگی و/یا فرسایش خاک بدتر میشود، در معرض بارگذاری سطحی و اضافه بار با استفاده از روشهای المان محدود پیوسته شبیهسازی میشود. روشهای مدلسازی عددی سهبعدی برای تغییرات قطر کالورت با استفاده از دادههای تجربی در مقیاس کامل شخص ثالث تأیید شد. شبیهسازیهای عددی پاسخ مکانیکی را از نظر جابجایی، نیروی مقطع و گشتاور، و کرنش پلاستیک معادل نسبت به سیستم دستخورده / خاک در طیف وسیعی از پارامترهای طراحی ارزیابی کردند. مطالعه حساسیت، وضعیت آسیب خاک و پلک را که با موقعیت و حجم حفرههای فرسایش خاک در مجاورت محیط کانال و خوردگی در معکوس با زوایای مختلف تعریف میشود، ارزیابی کرد. پاسخ مکانیکی کالورت حساسیت بیشتری را برای حفرههای فرسایش خاک واقع در یا بالای خط چشمه با پتانسیل بالاتر برای شکست و کاهش عمر مفید نشان داد. تأثیر بر پاسخ مکانیکی برای حفرههای فرسایش خاک در زیر خط چشمه محلی بود، و اگر ایجاد فضای خالی با زوال خوردگی ترکیب شود، ماده کالورت میتواند به عملکرد نزدیک شود.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
The mechanical response of a buried corrugated steel culvert, that is deteriorated due to corrosion and/or soil erosion, subject to surface loading and overburden is simulated using continuum finite element methods. The three-dimensional numerical modelling procedures were verified for culvert diameter changes using third party full-scale experimental data. The numerical simulations evaluated the mechanical response in terms of displacement, section force and moment, and equivalent plastic strain relative to the intact culvert/soil system across a range of design parameters. The sensitivity study evaluated the soil and culvert damage state as defined by the location and volume of soil erosion voids adjacent to the culvert perimeter and corrosion at invert with different angles. The mechanical response of the culvert exhibited greater sensitivity for soil erosion voids located at or above the springline with the higher potential for failure and decreased service life. The impact on the mechanical response was localized for soil erosion voids below the springline, and the culvert material can approach yield if void creation is combined with corrosion deterioration.
Introduction
Corrugated Steel Culverts (CSC) are core municipal infrastructure components used as part of a drainage system for watercourse and stormwater management. CSC products are thin-walled structures that have been used since the 1960 s due to their beneficial economic and technical characteristics such as strength and ductility. CSC products have a wide range of service life, from 10 to 100 years, depending on a number of factors that include geographic location, climate and CSC coatings [4]. Physical processes, related to environmental factors and ageing, can deteriorate the CSC/soil system and impair the mechanical performance and reduce the service life. Erosion voids and corrosion can develop in the backfill and CSC due to environmental conditions. The deterioration mechanisms are influenced by the presence of moisture, and soil characteristics including type, homogeneity, density, clay content and mineralogy [6,17]. The deterioration of the culvert system can result in life-threatening and expensive damage to the culverts and its related system [23].
Summary and conclusions
The effect of soil erosion voids on the soil pressure and the mechanical response of the CSC subject to overburden and surface load was examined using continuum finite element modelling procedures. Stress concentration effects were evaluated across a range of erosion void parameters (i.e., angle, depth, length, location, proximity). The stress concentration was defined as the normalized ratio of the predicted culvert local force or moment, in response to the soil erosion void, relative to the intact culvert/soil system response.