خلاصه
1. مقدمه
2. بررسی ادبیات
3. مواد و روشها
4. نتایج
5. بحث
منابع
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
4. Results
5. Discussion
References
چکیده
هوش مصنوعی (AI) به طور فزاینده ای توسط سازمان ها پذیرفته می شود. به طور کلی، محققان موافق هستند که پذیرش هوش مصنوعی با تغییرات اساسی در محل کار همراه خواهد بود. با این حال، شواهد تجربی در مورد این پدیده کمیاب است. در این مقاله، ما پذیرش هوش مصنوعی را در زمینه دانش ورزی را بررسی می کنیم. با تکیه بر تحقیقات موردی در هشت سازمان آلمانی که هوش مصنوعی را پیادهسازی کردهاند یا در حال توسعه سیستمهای هوش مصنوعی هستند، ما سه تغییر فراگیر را که کارکنان دانش درک میکنند شناسایی میکنیم: تغییر از کار دستی و وظایف تکراری به وظایفی که مستلزم استدلال و همدلی است. ظهور وظایف و نقش های جدید و ظهور نیازمندی های مهارتی جدید. علاوه بر این، ما سه عاملی را شناسایی میکنیم که برای توسعه سیستمهای هوش مصنوعی در زمینه دانش ورزی مفید هستند: پشتیبانی رهبری، مدیریت تغییر مشارکتی، و یکپارچهسازی مؤثر دانش حوزه. مفاهیم نظری و مدیریتی پرداخته شده است.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
Artificial Intelligence (AI) is increasingly adopted by organizations. In general, scholars agree that the adoption of AI will be associated with substantial changes in the workplace. Empirical evidence on the phenomenon remains scarce, however. In this article, we explore the adoption of AI in the context of knowledge work. Drawing on case study research in eight German organizations that have either implemented AI or are in the process of developing AI systems, we identify three pervasive changes that knowledge workers perceive: a shift from manual labor and repetitive tasks to tasks that involve reasoning and empathy, an emergence of new tasks and roles, and an emergence of new skill requirements. In addition, we identify three factors that are conducive to the development of AI systems in the context of knowledge work: leadership support, participative change management, and effective integration of domain knowledge. Theoretical and managerial implications are discussed.
Introduction
Advancements in the field of Artificial Intelligence (AI), combined with interrelated developments such as the growth of cloud-based services, have enabled more capable applications and a more wide-ranging adoption of AI by organizations [1]. Organization researchers are therefore increasingly interested in studying how the use of AI shapes and is shaped by organizations [2,3]. One question, in the context of this larger phenomenon, is how the adoption of AI by organizations shapes and is shaped by the world of work [3–5].
Scholars from various disciplines generally agree that the increasing adoption of AI will fundamentally change work [6–8]. The self-learning capabilities of AI algorithms imply that these changes even concern cognitive non-routine tasks performed by knowledge workers [3,9,10], including those of experts in fields such as law [11], medicine [12], and marketing [13]. Where scholars disagree, however, is what these changes will actually look like.
Labor economists generally assume that AI and automation will impact employment [6,9]. In an often cited article, Frey et al. [14] predicted that a substantial proportion of jobs could be automated by AI in the near future. Although such predictions failed to materialize to date [15], labor economists continue to focus on how AI and automation impact employment [16].
Results
In this section, we will summarize the findings of our analysis. Therefore, we will first summarize what changes knowledge workers perceive in association with the adoption of AI. Next, we will present conditions that are conducive to the adoption of AI in the context of knowledge work. Table 2 provides an overview of our findings.
Perceived Changes in the Workplace
Based on our analysis, we identify three broad changes associated with the adoption of AI in the context of knowledge work: (1) a shift from manual labor and repetitive tasks to tasks that involve reasoning and empathy, (2) the emergence of new tasks and roles, and (3) the development of new skills and/or skill requirements.