خلاصه
1. مقدمه
2. سنتز نانوذرات مغناطیسی
3. سیستم تحویل داروی مغناطیسی (MDDS)
4. هیپرترمی مغناطیسی
5. MNP ها در MRI
6. NPs در درمان رادیوتراپی
7. MNPs در مگنتوآنسفالوگرافی (MEG)
8. نتیجه گیری
منابع
Abstract
1. Introduction
2. Synthesis of Magnetic Nanoparticles
3. Magnetic Drug-Delivery System (MDDS)
4. Magnetic Hyperthermia
5. MNPs in MRI
6. NPs in Radioterapy Treatment
7. MNPs in Magnetoencephalography (MEG)
8. Conclusions
References
چکیده
نانوذرات مغناطیسی (MNPs) ابزاری پیشرفته در زمینه پزشکی هستند، زیرا میتوانند بر اساس رویکردهای زیست پزشکی اصلاح شوند و توسط یک میدان مغناطیسی خارجی در بدن انسان هدایت شوند. اولین هدف این بررسی، مثال زدن برخی کاربردهای امیدوارکننده در زمینه پزشکی، از جمله سیستمهای دارو رسانی هوشمند، درمان های ضد سلولهای سرطانی، رادیوتراپی، بهبود در تشخیص با استفاده از تصویربرداری تشدید مغناطیسی (MRI) و مهندسی بافت است. به طور مکمل، هدف دوم نشان دادن مکانیسم های عمل و مبانی نظری مربوط به مواد مغناطیسی پاسخگو است.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
Magnetic nanoparticles (MNPs) represent an advanced tool in the medical field because they can be modified according to biomedical approaches and guided by an external magnetic field in the human body. The first objective of this review is to exemplify some promising applications in the medical field, including smart drug-delivery systems, therapies against cancer cells, radiotherapy, improvements in diagnostics using magnetic resonance imaging (MRI), and tissue engineering. Complementarily, the second objective is to illustrate the mechanisms of action and theoretical foundations related to magnetoresponsive materials.
Introduction
Magnetic nanoparticles (MNPs) are nanoscale particles (1–100 nm) that can be guided through an external magnetic field due to their superparamagnetic, ferrimagnetic, and ferromagnetic properties, which may provide features for biomedical applications. MNPs with superparamagnetic properties are of special interest because they exhibit strong magnetic interactions under an external magnetic field, which disappear once the external magnetic field is removed. This property allows for the design of ferrofluids, since MNPs can be stabilized in solutions because they do not present magnetic interactions when the external magnetic field is switched off; and allows for in vivo performance, as in (i) cell marking [1], (ii) drug systems guided by a magnetic field [2], (iii) image contrast agents [3], and (iv) as heat generators in hyperthermia treatments [4].
MNPs generally contains two main parts: the core and the coating. The core presents a predominant quantum effect, which commonly incorporates magnetic elements such as Fe, Ni, or Co as well as their corresponding oxides, while the coating is responsible for stabilizing and protecting the core from the chemical effects of the medium [5]. The coating also plays an essential role since it provides specific properties and functions to the nucleus; for example, biocompatible natural polymers, such as chitosan or cellulose, work as cargo vectors of therapeutic agents to release in a controlled manner (Figure 1). Due to these characteristics, biomedical device synthesis has shown great interest in low toxic superparamagnetic MNPs, to avoid embolization or other secondary effects for the patient at the molecular or cellular level [6].
Conclusions
MNPs, in combination with superconducting magnets, have begun to play an essential role in advances in areas such as MDDS, MRI, and hyperthermia, among other fields. Therefore, it is crucial to continue the synthesis of MNPs and de