چکیده
1. مقدمه
2. برنامه آزمایشی
3. نتایج تجربی و بحث
4. نتیجه گیری
بیانیه مشارکت نویسنده CRediT
اعلامیه منافع رقابتی
تصدیق
در دسترس بودن داده ها
منابع
Abstract
1. Introduction
2. Experimental program
3. Experimental results and discussion
4. Conclusions
CRediT authorship contribution statement
Declaration of Competing Interest
Acknowledgement
Data availability
References
چکیده
به عنوان یک جزء کلیدی در تیرهای کامپوزیت، ناودانی ها در معرض شکست خستگی تحت بار رفت و برگشتی هستند. مشکل خستگی به ویژه در شرایط ترک خوردگی بتن، خوردگی گل میخ یا با آسیب اولیه برجسته تر است. بنابراین، آزمایشهای استاتیکی و خستگی برای بررسی خواص خستگی نمونههای فشار بیرون با عیوب اولیه، از جمله آسیب گل میخ و ترکخوردگی بتن انجام میشود. نتایج آزمایش نشان می دهد که آسیب گل میخ تأثیر زیادی بر عمر خستگی دارد، در حالی که ترک بتن تأثیر کمی بر عمر خستگی دارد. آسیب گل میخ در مقایسه با خواص استاتیکی تأثیر بیشتری بر عملکرد خستگی دارد. علاوه بر این، بر اساس تئوری انرژی اتلاف دهنده و پدیده تجربی، نقش گل میخ و بتن در فرآیند خرابی خستگی گل میخ و تعامل آنها خلاصه می شود. انرژی اتلافی عمدتاً شامل انرژی کرنش پلاستیک برشی گل میخ، انرژی کرنش پلاستیک بتن تحت فشار پس از گل میخ و انرژی گرمایی تولید شده از اصطکاک بین گل میخ و بتن است.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
As a key component in composite beams, the studs are prone to fatigue failure under reciprocating load. Fatigue problem is more prominent especially under circumstances of concrete cracking, stud corrosion or with initial damage. Therefore, static and fatigue tests are carried out to study the fatigue properties of push-out specimens with initial defects, including stud damage and concrete cracking. The test results show that the damage of stud has a great influence on fatigue life, while the crack of concrete has a little influence on fatigue life. The damage of stud has a greater influence on fatigue performances compared to static properties. In addition, based on the dissipative energy theory and experimental phenomenon, the roles of stud and concrete in the process of stud fatigue failure and their interaction are summarized. The dissipative energy mainly includes the shear plastic strain energy of the stud, the plastic strain energy of concrete under compression after the stud, and the heat energy generated by the friction between the stud and concrete.
Introduction
Steel-concrete composite beams have become popular in recent years for use in bridge engineering [1,2]. Under the complicated environment and load, there may be some damage to the composite beam. There might be some damage, such as corrosion, fractures of weld leg and longitudinal or transverse cracks in the concrete deck. The static and fatigue behavior of stud connection is sophisticated and affects the design resistance and stiffness of composite beams [3,4]. The damage of the stud and concrete may have a great influence on the shear fatigue performance of the interface.
Welding defects significantly lower the shear capacity of studs, as is widely known. There are many types of welding defects that might appear, such as inadequate penetration, absence of fusion, and gas inclusion [5]. To determine how the damage location and degree affected the static behavior and shear capacity of stud shear connections, six specimens with identical geometrical dimensions were investigated by Qi et al [6]. The test findings showed that, in comparison to the shear capacity of normal specimen, a loss of up to 36.6 % and 62.9 % of the shank area might cause a falling shear capacity of 7.9 % and 57.2 %, respectively. The push-out test was simulated using mathematics, and the results of the test were used to validate the study. It was shown that even though the area of the stud had significantly decreased, the shear capacity was not affected by the severity of the damage when the damaged part was placed 0.5d (where d is the shank diameter) from the stud root, based on the numerical model.
Conclusions
Static and fatigue tests were carried out on studs in steel–concrete composite study the effects of initial damage in stud and concrete on fatigue performance. The following conclusions are drawn:
1. Compared with nondestructive specimens, the fatigue life of transverse crack and longitudinal crack specimens were reduced by 22 % and 4.9 %, respectively, which is determined by the stress characteristics of the stud. Transverse crack makes the stud easily in a state of bending and shear composite, while longitudinal crack does not
2. Compared with the preset cracks of concrete, the damage of stud and weld collar had more influence on fatigue performance, in which the loss of stud section of 62.9 % leaded to only about 10 % of fatigue life. The initial damage of stud accelerates the damage accumulation in the stable fatigue development stage, while the concrete cracking leads to the increase of residual slip in the early stage.
3. The existing calculation methods of residual slip are not completely applicable to the test results of different stresses, and most of the calculation results are too small, which requires some modification of their coefficients.