خلاصه
معرفی
روش شناسی
نتایج و بحث
نتیجه گیری
توصیه هایی برای آینده پژوهی
در دسترس بودن داده ها و مواد
منابع
Abstract
Introduction
Methodology
Results and Discussions
Conclusions
Recommendations for Future Study
Availability of data and materials
References
چکیده:
استحکام کششی ضعیف بتن آن را مستعد ترک خوردگی تحت بارهای طولانی مدت می کند که منجر به کاهش ظرفیت باربری و تقویت خوردگی میله می شود. این مطالعه به بررسی اثربخشی خود ترمیمی مبتنی بر میکروبی در بتن با مقاومت بالا، با تمرکز بر دو سویه باکتری: Sporosarcina koreensis و Bacillus میپردازد. نتایج نشاندهنده پیشرفتهای قابلتوجهی در خواص میکرو و ماکرو فیزیکی بتن باکتریایی با مقاومت بالا با باسیلوس فکسوس و S. koreensis است که از کنترل پیشی میگیرد. بتن تزریق شده با باسیلوس فکسوس افزایش قابل توجه 21.8٪ در مقاومت فشاری در 7 روز و 11.7٪ در 56 روز را نشان می دهد. به طور مشابه، بتن تیمار شده با S. koreensis به ترتیب 12.2% و 7.4% افزایش را در 7 و 56 روز نشان می دهد. بهبود ترک بهبود یافته به دلیل بارش کلسیت رخ می دهد که توسط پراش اشعه ایکس و میکروسکوپ الکترونی روبشی تأیید می شود. هر دو سویه باکتری در عرض 42 روز به ترتیب با عرض 259.7 میکرومتر و 288.7 میکرومتر به بسته شدن ترک دست می یابند. علاوه بر این، بتن باکتریایی حاصل از این سویه ها از نظر دوام در برابر قرار گرفتن در معرض آب، اسید و نمک برتری دارد و از بتن کنترل پیشی می گیرد. این یافتهها بر پتانسیل خودترمیمی مبتنی بر میکروبی در بتن با مقاومت بالا تأکید میکنند و یک استراتژی عملی برای افزایش انعطافپذیری سازه و افزایش طول عمر زیرساخت بتن ارائه میدهند.
Abstract
Concrete’s weak tensile strength renders it susceptible to cracking under prolonged loads, leading to reduced load-bearing capacity and reinforcing bar corrosion. This study investigates the effectiveness of microbial-based self-healing in high-strength concrete, focusing on two bacterial strains: Sporosarcina koreensis and Bacillus. Results demonstrate significant enhancements in micro- and macro-physical properties of high-strength bacterial concrete with Bacillus flexus and S. koreensis, surpassing the control. Bacillus flexus-infused concrete exhibits a remarkable 21.8% increase in compressive strength at 7 days and 11.7% at 56 days. Similarly, S. koreensis-treated concrete shows 12.2% and 7.4% increases at 7 and 56 days, respectively. Enhanced crack healing occurs due to calcite precipitation, confirmed by X-ray diffraction and scanning electron microscopy. Both bacterial strains achieve crack closure within 42 days, with widths of 259.7 µm and 288.7 µm, respectively. Moreover, bacterial concrete from these strains excels in durability against water, acid, and salt exposure, surpassing control concrete. These findings emphasize microbial-based self-healing’s potential in high-strength concrete, providing a practical strategy to enhance structural resilience and extend concrete infrastructure lifespan.
Introduction
High-strength concrete (HSC) has gained widespread recognition for its enhanced mechanical properties, making it suitable for demanding structural applications (Krishnapriya et al., 2015). However, like conventional concrete, HSC is susceptible to cracking under various stress conditions, which can compromise its durability and load-bearing capacity (Iheanyichukwu et al., 2018). The resulting cracks not only diminish load-bearing capacity but also trigger environmental and economic issues, including carbon emissions during repair (Rosewitz et al., 2021). Additional weakness of concrete structure is the presence of voids and fissures in its body matrix. The circumstance of such voids in the matrix of concrete plays substantial role in determining its mechanical properties and durability (Feng et al., 2021; Khaliq & Ehsan, 2016).
The concept of self-healing concrete, facilitated by microbial activity, has emerged as a promising avenue to address these challenges, aiming to autonomously fill and repair such voids and cracks via bio-mineralization. In this process, bacteria induce the conversion of calcium particles within the cement composite into calcium carbonate, calcite. Precipitation and deposition of calcite due to microbial activity of bacteria seals such voids and fissures in the concrete body matrix. This in turn advances the mechanical properties and durability of concrete as well as healing rate of crack formed due variously initiated stress (Rohini & Padmapriya, 2021; Singh & Gupta, 2020). These bacteria must exhibit robust urease activity, withstand high pH levels, and endure mechanical stress within the concrete matrix (Rohini & Padmapriya, 2021; Rosewitz et al., 2021).
Conclusions
This study investigated the impact of microbes on high-strength concrete properties, utilizing B. flexus and S. koreensis. The research encompassed their effect on mechanical strengths (compressive, flexural), ultrasonic pulse velocity, acid and salt resistance, and microbial healing. Key findings are presented as follows:
High-strength bacterial concrete, employing B. flexus and S. koreensis, exhibited improved macro-physical properties compared to conventional concrete. B. flexus concrete showed 21.8% and 11.7% higher compressive strength at 7 and 56 days, while S. koreensis concrete exhibited 12.2% and 7.4% increases. Flexural strength for B. flexus concrete was 6.0% and 9.0% higher at 14 and 28 days, and for S. koreensis concrete, it increased by 5.2% and 6.4%.
Microbial-induced calcite deposition significantly enhanced the healing capacity of cracked bacterial concrete. Within 42 days, B. flexus and S. koreensis concrete restored cracked sections by 259.7 µm and 288.7 µm crack widths, respectively.
Bacterial concrete exhibited greater strength restoration following 55% stress-level crack initiation. While normal concrete regained only 64.0% of its 28-day compressive strength, B. flexus and S. koreensis concrete achieved 96.1% and 94.1% restoration, respectively.
Enhanced durability against acid and salt attacks was observed in bacterial concrete, with reduced weight and strength loss compared to conventional concrete. B. flexus and S. koreensis concrete experienced lower strength losses (4.8% and 5.3% for sulfuric acid, 1.8% and 2.1% for magnesium sulfate) than conventional concrete.