توصیف تاثیر توپولوژی در پردازش جریان اینترنت اشیا
ترجمه نشده

توصیف تاثیر توپولوژی در پردازش جریان اینترنت اشیا

عنوان فارسی مقاله: توصیف تاثیر توپولوژی در پردازش جریان اینترنت اشیا
عنوان انگلیسی مقاله: Characterizing the impact of topology on IoT stream processing
مجله/کنفرانس: چهارمین انجمن جهانی در اینترنت اشیا – ۴th World Forum on Internet of Things
رشته های تحصیلی مرتبط: مهندسی فناوری اطلاعات، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: اینترنت و شبکه های گسترده، شبکه های کامپیوتری، هوش مصنوعی
کلمات کلیدی فارسی: اینترنت اشیا، سرور، توپولوژی، سنسورها، یادگیری ماشین
کلمات کلیدی انگلیسی: IoT, Server, Topology, Sensors, Machine Learning
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/WF-IoT.2018.8355119
دانشگاه: Intelligent Platforms & Architecture Lab – University of Washington – USA
صفحات مقاله انگلیسی: 6
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: کنفرانس
نوع مقاله: ISI
سال انتشار مقاله: 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E9187
فهرست مطالب (انگلیسی)

Abstract

1- INTRODUCTION

2- SYSTEM ARCHITECTURE & TOPOLOGIES

3- EXPERIMENTAL METHODOLOGY

4- OCCUPANCY PREDICTION & FORECASTING

5- RESULTS

6-  RELATED WORK

7- CONCLUSION

ACKNOWLEDGEMENTS

REFERENCES

بخشی از مقاله (انگلیسی)

Abstract

The Internet of Things (IoT) extends traditional cyber-physical systems by linking sensor based edge devices to network accessible services and resources. In most current IoT deployments, sensor data is streamed from edge devices to servers for storage. Analytical pipelines are then used to translate this raw sensor data into actionable information in real-time. As additional IoT devices are deployed, the volume and rate of data received on the server side can increase dramatically. This has a possibility of offsetting the response latencies beyond acceptable limits for IoT analytical systems. In this paper, we compare the impact of alternative serverside stream processing topologies for ingesting and analyzing IoT sensor data in real-time. We use real building sensor data with our real-time IoT platform called Namatad. We have characterized and analyzed the latency and QoS impact due to the different levels of granularity of the ingestion and routing process by which we transmit data into the analytical pipelines. Our results show that as IoT systems continue to scale in density, server-side topology management for IoT data streams is critical for latency-sensitive control and analysis applications.

INTRODUCTION

Internet of Things (IoT) systems consist of multiple compute platforms, notably edge devices and servers. Within IoT systems, most of the focus has been on the development and integration of novel new edge devices. For example, the recent proliferation of wearable devices designed to monitor personal health has increased significantly in recent years yielding unprecedented awareness of fitness. Similarly, new smart buildings are integrating new sensors with building control systems to improve energy efficiency, occupant comfort, and safety [1], [2]. The raw data obtained using IoT devices provides tremendous operational insight, which is driving the deployment of additional IoT devices. For deployed IoT devices, once sensor values are read the data generated is transmitted across the network and stored on server platforms for later analysis [3]. Once stored, this data is then analyzed, leveraging recent advances in machine learning. To date, most of these IoT analytics have been performed offline, using batch-oriented techniques. However, as IoT analytics transition to online, real-time pipelines that immediately translate raw data into actionable information, earlier approaches to manage streaming data becomes challenging. Additionally, as the number of deployed IoT devices increases, how IoT data is routed and processed must be handled judiciously to prevent overloading and ensure scalability.