مقاله انگلیسی راه حل های مدیریت انرژی در برنامه های کاربردی اینترنت اشیا
ترجمه نشده

مقاله انگلیسی راه حل های مدیریت انرژی در برنامه های کاربردی اینترنت اشیا

عنوان فارسی مقاله: راه حل های مدیریت انرژی در برنامه های کاربردی اینترنت اشیا: تجزیه و تحلیل تکنیکی و دستورالعمل های تحقیق جدید
عنوان انگلیسی مقاله: Energy management solutions in the Internet of Things applications: Technical analysis and new research directions
مجله/کنفرانس: تحقیقات سیستم های شناختی - Cognitive Systems Research
رشته های تحصیلی مرتبط: مدیریت، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: مدیریت فناوری اطلاعات، مدیریت صنعت، اینترنت و شبکه های گسترده
کلمات کلیدی فارسی: اینترنت اشیا ، مدیریت انرژی ، دستگاه های هوشمند ، محاسبات انرژی سبز ، تولید برق
کلمات کلیدی انگلیسی: Internet of Things, Energy management, Smart devices, Green energy computing, Power generation
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.cogsys.2020.12.009
دانشگاه: Zhoukou Normal University, Henan, China
صفحات مقاله انگلیسی: 17
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2021
ایمپکت فاکتور: 1.902 در سال 2020
شاخص H_index: 44 در سال 2021
شاخص SJR: 0.429 در سال 2020
شناسه ISSN: 1389-0417
شاخص Quartile (چارک): Q3 در سال 2020
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E15394
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
نوع رفرنس دهی: vancouver
فهرست مطالب (انگلیسی)

Abstract

Keywords

1. Introduction

2. Research finding approach

3. Energy management solutions in IoT

3.1. Energy efficacy solutions on smart home applications

3.2. Energy harvesting methods in smart environments

3.3. Energy management techniques in smart cities

3.4. Energy efficiency approaches on smart building

3.5. Energy and power management in smart grid

3.6. Power and energy efficiency solutions in smart industry

4. Discussion and new research directions

5. Conclusion

Declaration of Competing Interest

References

بخشی از مقاله (انگلیسی)

Abstract

By advancement of Internet of Things (IoT) technology in smart life such as smart city, smart home, smart healthcare and smart transportation, interconnections between smart things are growing that complicate evaluation of efficiency factors on the intelligent systems. Energy consumption as one of the most challenging issues is increasing with the growing IoT devices and existing interconnections between cloud data centers, mobile applications and human activities. Managing energy efficiency and power consumption is one of the important issues in green IoT-enabled technologies. This paper presents an overview on the energy management solutions in the IoT based on Systematic Literature Review (SLR). The main goal of this SLR-based overview is to recognize significant research trends in the field of energy management and power consumption techniques which need additional consideration to highlight more efficient and effective methods in IoT. Also, a taxonomy is proposed to categorize the existing research studies on energy management solutions. A statistical and technical analysis of reviewed existing papers are provided, and evaluation factors and attributes are discussed. We observed that variety of published research papers in smart home have highest percentage to evaluate energy management in the IoT. Also, deep learning and clustering methods are must popular techniques that were applied to evaluate the energy management in IoT case studies. Finally, new challenges and forthcoming issues of the energy management and efficient power consumption methods are presented.

 

1. Introduction

Today, Internet of Things (IoT) systems are used for connecting a various collection of smart devices, cloud data centers, fog nodes and mobile applications in many smart environments (Al-Turjman and Baali, 2019; Ahmad, 2020). Also, IoT applications provide an upper boundary of cloud-edge services for improving people’s daily lives by supporting cost-efficient and energy saving solutions on various communication strategies such as device to device, device to application, and device to cloud (Souri, 2019; Yan, 2020). Energy-efficient solutions in some case studies of IoT environments such as smart cities, smart transportations, smart home-care, and smart grids focus on energy saving management and improvement of power consumption in the IoT ethics (Zahmatkesh and AlTurjman, 2020; Naranjo, 2019). In the recent years, many research studies applied intelligent techniques, Machine Learning (ML) methods (Qadri, 2020; Deng, 2019), formal methods (Souri and Norouzi, 2019) and meta-heuristic algorithms (Chen et al., 2019; Chen, 2019) to examine the development of energy efficiency management for cloud-edge computing in the IoT environments. Also, there exists the challenge of continually providing optimal Quality of Service (QoS) by guarantying the Service level Agreements (SLAs) in energy consumption solutions (Safara, 2020). Based on increasing human usages to smart devices and IoT applications on smart phones, energy management concept is an important issue for decreasing cost of energy consumption in IoT environments (Safara, 2020; Jesudurai and Senthilkumar, 2019). According to existing review and survey studies (Bedi, 2018; Shrouf et al., 2014; Roselli, 2015; Reka and Dragicevic, 2018; Khajenasiri, 2017; Abdullah, 2016), there are some limitations on the presented discussions on energy efficient overview as follows: (1) Providing energy efficient solutions on just single case study of IoT environment such as healthcare monitoring or industrial equipment; (2) There is no an overview on the energy management solutions in IoT environments; (3) Ignoring methodological taxonomies for categorizing energy efficient solutions based on technical aspects and approaches; (4) Omitting technical analysis on energy efficiency features and opportunities in IoT environments.