شبیه سازی مدل کلان داده بر روی یک پایگاه داده گراف
ترجمه نشده

شبیه سازی مدل کلان داده بر روی یک پایگاه داده گراف

عنوان فارسی مقاله: شبیه سازی مدل کلان داده بر روی یک پایگاه داده گراف برای نظارت در شبکه های حسگر چندرسانه ای بی سیم
عنوان انگلیسی مقاله: Big Data Model Simulation on a Graph Database for Surveillance in Wireless Multimedia Sensor Networks
مجله/کنفرانس: تحقیقات کلان داده - Big Data Research
رشته های تحصیلی مرتبط: مهندسی فناوری اطلاعات، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: مدیریت سیستم های اطلاعاتی، سیستم های چندرسانه ای، سامانه های شبکه ای، شبکه های کامپیوتری، مهندسی الگوریتم ها و محاسبات
کلمات کلیدی فارسی: اینترنت اشیا (IoT)، پایگاه داده های بزرگ گراف، پایگاه های داده NoSQL، شبکه های حسگر چند رسانه ای بی سیم، شبیه ساز
کلمات کلیدی انگلیسی: Internet of things (IoT)، Big graph databases، NoSQL databases، Wireless multimedia sensor networks، Simulator
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.bdr.2017.09.003
دانشگاه: Middle East Technical University, Department of Computer Engineering, Ankara, Turkey
صفحات مقاله انگلیسی: 18
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 7/184 در سال 2017
شاخص H_index: 12 در سال 2019
شاخص SJR: 0/757 در سال 2017
شناسه ISSN: 2214-5796
شاخص Quartile (چارک): Q1 در سال 2017
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
کد محصول: E11088
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Background

3- Related work

4- Real WSN system

5- The graph-based big data model

6- Prototype implementation for proposed model

7- Simulation

8- A case study: surveillance application

9- Experimental work

10- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

Sensors are present in various forms all around the world such as mobile phones, surveillance cameras, smart televisions, intelligent refrigerators and blood pressure monitors. Usually, most of the sensors are a part of some other system with similar sensors that compose a network. One of such networks is composed of millions of sensors connected to the Internet which is called Internet of Things (IoT). With the advances in wireless communication technologies, multimedia sensors and their networks are expected to be major components in IoT. Many studies have already been done on wireless multimedia sensor networks in diverse domains like fire detection, city surveillance, early warning systems, etc. All those applications position sensor nodes and collect their data for a long time period with real-time data flow, which is considered as big data. Big data may be structured or unstructured and needs to be stored for further processing and analyzing. Analyzing multimedia big data is a challenging task requiring a high-level modeling to efficiently extract valuable information/knowledge from data. In this study, we propose a big database model based on graph database model for handling data generated by wireless multimedia sensor networks. We introduce a simulator to generate synthetic data and store and query big data using graph model as a big database. For this purpose, we evaluate the well-known graph-based NoSQL databases, Neo4j and OrientDB, and a relational database, MySQL. We have run a number of query experiments on our implemented simulator to show that which database system(s) for surveillance in wireless multimedia sensor networks is efficient and scalable.

Introduction

A wireless multimedia sensor network (WMSN) is a distributed wireless network that consists of a set of multimedia sensor nodes, which are connected to each other or connected to leading gateways. Nowadays, smart devices such as mobile phones, smart televisions, and smart watches are equipped with sensors and network connections. Hence, with the advances in wireless communication technologies, multimedia sensor networks are expected to be one of the major components in the Internet of things (IoT). A typical application for a WMSN is a surveillance system or a monitoring system. Smart city surveillance cameras with 7/24 recording, or one million sensor nodes reporting meteorological data produce data in various formats as video, audio, and text [1]. All that huge structured or unstructured data is considered as big data, which is defined by a number of Vs; Volume, Velocity, Variety, Veracity, and Value. Min et al. [2] present a comprehensive survey of big data and they identify that “defining the structural model of big data” is a fundamental problem.