تخصیص منابع تعاونی در شبکه های بی سیم 5G مبتنی بر یادگیری عمیق
ترجمه نشده

تخصیص منابع تعاونی در شبکه های بی سیم 5G مبتنی بر یادگیری عمیق

عنوان فارسی مقاله: تخصیص منابع تعاونی در شبکه های بی سیم 5G مبتنی بر یادگیری عمیق
عنوان انگلیسی مقاله: Deep Learning Based Cooperative Resource Allocation in 5G Wireless Networks
مجله/کنفرانس: شبکه های موبایل و برنامه های کاربردی - Mobile Networks and Applications
رشته های تحصیلی مرتبط: مهندسی فناوری اطلاعات و ارتباطات، مهندسی فناوری اطلاعات، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: مخابرات سیار، سامانه های شبکه ای، معماری سیستم های کامپیوتری
کلمات کلیدی فارسی: یادگیری عمیق، تخصیص منابع، خط ارتباطی، 5G، شبکه بی سیم
کلمات کلیدی انگلیسی: Deep learning، Resource allocation، Downlink، 5G، Wireless network
شناسه دیجیتال (DOI): https://doi.org/10.1007/s11036-018-1178-9
دانشگاه: University of Electronic Science and Technology of China (UESTC), Sichuan 610054, China
صفحات مقاله انگلیسی: 8
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 2/850 در سال 2018
شاخص H_index: 79 در سال 2019
شاخص SJR: 0/426 در سال 2018
شناسه ISSN: 1572-8153
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
کد محصول: E11259
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Related works

3- Contribution and structure of this work

4- Theoretical modeling

5- Deep learning based resource allocation method

6- Simulation and performance analysis

7- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

Wireless personal communication has become popular with the rapid development of 5G communication systems. Critical demands on transmission speed and QoS make it difficult to upgrade current wireless personal communication systems. In this paper, we develop a novel resource allocation method using deep learning to squeeze the benefits of resource utilization. By generating the convolutional neural network using channel information, resource allocation is to be optimized. The deep learning method could help make full use of the small scale channel information instead of traditional resource optimization, especially when the channel environment is changing fast. Simulation results indicate the fact that the performance of our proposed method is close to MMSE method and better than ZF method, and the time consumption of computation is smaller than traditional method.

Introduction

In 5G wireless communication systems, how to make full use of precious bandwidth, power and antenna resource has become a critical topic in recent studies. The official standardization organization 3GPP has recently published the official released standard [1] and add some key features to improve system throughput and reduce the latency. The target of 5G is to spread the bandwidth and make flexible use of system resources to achieve better performance, resources in time, spectrum and spatial domain are jointly combined and optimized. Traditional studies on 5G are mainly about the proof of mathematical bound [2, 3], and then provide heuristic methods to approximate the proved bound. However, there is hardly effective operations to reach the bound considering only existing coding, modulation, antenna selection, etc. To solve this problem, researchers tried to introduce the famous Artificial Intelligence (AI) technology. The growing discussions about deep learning in AI has brought opportunities to improve system performance in 5G related works. Relying on the study process of deep learning, benefits of resource allocation could be obtained using the dedicated neural network. So there are still quite space to approximate the theoretical bound using the resource allocation.