کاربرد یادگیری تقویتی در زمان بندی کار خوشه ای UAV
ترجمه نشده

کاربرد یادگیری تقویتی در زمان بندی کار خوشه ای UAV

عنوان فارسی مقاله: کاربرد یادگیری تقویتی در زمان بندی کار خوشه ای UAV
عنوان انگلیسی مقاله: Application of reinforcement learning in UAV cluster task scheduling
مجله/کنفرانس: نسل آینده سیستم های کامپیوتری - Future Generation Computer Systems
رشته های تحصیلی مرتبط: مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: هوش مصنوعی، مهندسی الگوریتم ها و محاسبات
کلمات کلیدی فارسی: یادگیری تقویتی، خوشه UAV، زمان بندی وظیفه
کلمات کلیدی انگلیسی: Reinforcement learning، UAV cluster، Task scheduling
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.future.2018.11.014
دانشگاه: chool of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 7/007 در سال 2018
شاخص H_index: 93 در سال 2019
شاخص SJR: 0/835 در سال 2018
شناسه ISSN: 0167-739X
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E11553
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Overview of UAV clusters

3- Reinforcement learning in UAV cluster scheduling

4- UVA cluster task scheduling

5- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

Recently, unmanned aerial vehicle (UAV) clusters have been widely used in various applications due to its high flexibility, large coverage and reliable transmission efficiency. In order to achieve the collaboration of multiple UAV tasks within a UAV cluster, we propose a task-scheduling algorithm based on reinforcement learning in this paper, which enables the UAV to adjust its task strategy automatically and dynamically using its calculation of task performance efficiency. As the UAV needs to perform real-time tasks while working in a dynamic environment without centralized control, it needs to learn tasks according to real-time data. Reinforcement learning has the ability to carry out real-time learning and decision making based on the environment, which is an appropriate and feasible method for the task scheduling of UAV clusters. From this perspective, we discuss reinforcement learning that solves the channel allocation problem existing in UAV cluster task scheduling. Finally, this paper also discusses several research problems that may be faced by the further application of UAV cluster task scheduling.