اتخاذ تصمیم انعطاف پذیر داده مفقود برای اینترنت اشیای بهداشت و درمان
ترجمه نشده

اتخاذ تصمیم انعطاف پذیر داده مفقود برای اینترنت اشیای بهداشت و درمان

عنوان فارسی مقاله: اتخاذ تصمیم انعطاف پذیر داده مفقود برای اینترنت اشیای بهداشت و درمان از طریق شخصی سازی: مطالعه موردی در مورد سلامت مادران
عنوان انگلیسی مقاله: Missing data resilient decision-making for healthcare IoT through personalization: A case study on maternal health
مجله/کنفرانس: سیستم های کامپیوتری نسل آینده – Future Generation Computer Systems
رشته های تحصیلی مرتبط: مهندسی فناوری اطلاعات، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: شبکه های کامپیوتری، اینترنت و شبکه های گسترده، الگوریتم و محاسبات
کلمات کلیدی فارسی: داده مفقود، نظارت بلند مدت، نظارت بر سلامت، اینترنت اشیا، مراقبت از مادران، تصمیم گیری شخصی
کلمات کلیدی انگلیسی: Missing Data, Long-term Monitoring, Health Monitoring, Internet of Things, Maternity Care, Personalized Decision Making
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus – Master Journals – JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.future.2019.02.015
دانشگاه: Department of Future Technologies, University of Turku, Turku, Finland
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 5.341 در سال 2017
شاخص H_index: 85 در سال 2019
شاخص SJR: 0.844 در سال 2017
شناسه ISSN: 0167-739X
شاخص Quartile (چارک): Q1 در سال 2017
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 39
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E12043
فهرست انگلیسی مطالب

Abstract


1. Introduction


2. Background and related work


3. Missing data resilient decision-making approach


4. Demonstration and evaluation


5. Conclusion


Acknowledgments


References

نمونه متن انگلیسی مقاله

Abstract


Remote health monitoring is an effective method to enable tracking of at-risk patients outside of conventional clinical settings, providing early-detection of diseases and preventive care as well as diminishing healthcare costs. Internet-of-Things (IoT) technology facilitates developments of such monitoring systems although significant challenges need to be addressed in the real-world trials. Missing data is a prevalent issue in these systems, as data acquisition may be interrupted from time to time in long-term monitoring scenarios. This issue causes inconsistent and incomplete data and subsequently could lead to failure in decision making. Analysis of missing data has been tackled in several studies. However, these techniques are inadequate for real-time health monitoring as they neglect the variability of the missing data. This issue is significant when the vital signs are being missed since they depend on different factors such as physical activities and surrounding environment. Therefore, a holistic approach to customize missing data in real-time health monitoring systems is required, considering a wide range of parameters while minimizing the bias of estimates. In this paper, we propose a personalized missing data resilient decision-making approach to deliver health decisions 24/7 despite missing values. The approach leverages various data resources in IoT-based systems to impute missing values and provide an acceptable result. We validate our approach via a real human subject trial on maternity health, in which 20 pregnant women were remotely monitored for 7 months. In this setup, a real-time health application is considered, where maternal health status is estimated utilizing maternal heart rate. The accuracy of the proposed approach is evaluated, in comparison to existing methods. The proposed approach results in more accurate estimates especially when the missing window is large.

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

اتخاذ تصمیم انعطاف پذیر داده مفقود برای اینترنت اشیای بهداشت و درمان
نوشته های مرتبط
مقالات جدید
لوگوی رسانه های برخط

logo-samandehi

پیوندها