فعال سازی قلیایی توده ذرات
ترجمه نشده

فعال سازی قلیایی توده ذرات

عنوان فارسی مقاله: فعال سازی قلیایی توده ذرات از زباله های ساخت و ساز و تخریب: ارزش گذاری با توجه به کاربردهای روسازی و زیرسازی جاده
عنوان انگلیسی مقاله: Alkali-activation of aggregate fines from construction and demolition waste: Valorisation in view of road pavement subbase applications
مجله/کنفرانس: مجله تولید پاک – Journal of Cleaner Production
رشته های تحصیلی مرتبط: مهندسی محیط زیست، شیمی
گرایش های تحصیلی مرتبط: آلودگی های محیط زیست، شیمی محیط زیست
کلمات کلیدی فارسی: زباله های ساخت و ساز و تخریب، فعال سازی قلیایی، ترکیبات، پایدارسازی، رابطه خواص ترکیب، مقاومت در برابر فشار و خمش
کلمات کلیدی انگلیسی: Construction and demolition waste، Alkali-activation، Constituents، Stabilization، Composition properties relationship، Compressive and flexural strength
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.jclepro.2019.06.207
دانشگاه: Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Torino, Italy
صفحات مقاله انگلیسی: 14
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 7.096 در سال 2018
شاخص H_index: 150 در سال 2019
شاخص SJR: 1.620 در سال 2018
شناسه ISSN: 0959-6526
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12764
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Materials and methods

3. Results and discussion

4. Conclusions and perspectives

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

This study investigates the potential of fine particles of recycled construction and demolition waste (CDW) aggregate to undergo alkali-activation when mixed with an appropriate alkaline solution. The fine is a natural by-product of the milling process and includes particles from four main material sources (i.e., recycled concrete, recycled asphalt, crushed bricks and tiles, and natural aggregate and excavated soil) and other occasional elements which are too small for identification. The fine was obtained by sifting the material through a 125 mm sieve. Since the reactivity of unselected material depends on its constituents, these were also individually investigated. Firstly, the four constituents of CDW recycled aggregates were separated, then milled to a size smaller than 125 mm, before being tested to measure their reactivity to an alkaline solution. A preliminary chemical and mineralogical characterization of the five powders was carried out to identify the main crystalline phases and ascertain the presence of aluminosilicates needed for the alkali-activation process. Particles of each powder were afterwards mixed with three concentrations of the same alkaline solution with a liquid/solid mass ratio of 0.4, cast in prismatic moulds, and cured at room temperature. Mechanical tests after 3, 7, and 28 days of curing demonstrated that powders react positively in a basic environment, showing an increase in strength without any thermal treatment. Hardened pastes of undivided fine aggregate and recycled asphalt exhibited the best results in terms of flexural and compressive strength with the more concentrated solution. A Field Emission Scanning Electron Microscopy analysis was also carried out to observe the microstructure and to support an interpretation of the mechanical strength data. Results demonstrated the feasibility of using a solution to activate unselected CDW fine particles to stabilize CDW aggregates. In full scale applications, CDW aggregates can be stabilized without the addition of any binder.

Introduction

The continuous production of waste from construction and demolition activities is a major environmental concern in European countries. EU Commission estimates reveal that construction and demolition waste (CDW) accounts for approximately 25e30% of all waste generated in Europe (European Commission, 2011). Several researches have demonstrated the potential for the reuse of this waste as an alternative material in civil engineering (Cardoso et al., 2016; Contreras et al., 2016; Vieira and Pereira, 2015). This is due to the presence of solid particles from a variety of construction materials which can form new aggregate grains of variable toughness and hardness, depending on composition, which in turn is conditioned by the type of construction and/or demolition work. In fact, an unselected CDW usually includes constituent materials in different proportions including (recycled) concrete fragments (RC), ceramic products such as crushed bricks and tiles (BT), reclaimed asphalt pavement grains (RA), natural aggregates and excavated soils (NA), together with occasional small particles of glass, wood, metals, and plastic (Jimenez, 2013  ). Member states are being encouraged by the European Directive 2008/98/EC (European Parliament, 2008) to increase the use of recycled non-hazardous waste resources in place of natural materials to a minimum of 70% (by weight) by 2020. Consequently, construction activity has witnessed the increased use of alternative materials and recycled aggregate from CDW in numerous civil works (Vandecasteele et al., 2013).