یک بررسی در مورد تخلیه هوشمند در رایانش مرزی
ترجمه نشده

یک بررسی در مورد تخلیه هوشمند در رایانش مرزی

عنوان فارسی مقاله: تخلیه هوشمند در رایانش مرزی با دسترسی چندگانه: یک بررسی و چارچوب مطابق با آخرین پیشرفتهای علمی
عنوان انگلیسی مقاله: Intelligent Offloading in Multi-Access Edge Computing: A State-of-the-Art Review and Framework
مجله/کنفرانس: مجله ارتباطات - Communications Magazine
رشته های تحصیلی مرتبط: کامپیوتر
گرایش های تحصیلی مرتبط: محاسبات ابری، هوش مصنوعی، معماری سیستم های کامپیوتری
نمایه: JCR – Master Journal List – Master ISC - Scopus
شناسه دیجیتال (DOI): https://doi.org/10.1109/MCOM.2019.1800608
دانشگاه: Sch. of Commun. & Inf. Eng., Chongqing Univ. of Post & Telecommun., Chongqing, China
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 12/727 در سال 2018
شاخص H_index: 213 در سال 2019
شاخص SJR: 2/373 در سال 2018
شناسه ISSN: 0163-6804
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 7
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13102
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست انگلیسی مطالب

Abstract


1- Introduction


2- Intelligent Approaches for Offloading in MEC


3- Advantage, Limitation, and Application


4- AI in MEC System Design: Framework and Challenges


5- Conclusions


References

نمونه متن انگلیسی مقاله

Abstract


Multi-access edge computing (MEC), which is deployed in the proximity area of the mobile user side as a supplement to the traditional remote cloud center, has been regarded as a promising technique for 5G heterogeneous networks. With the assistance of MEC, mobile users can access computing resource effectively. Also, congestion in the core network can be alleviated by offloading. To adapt in stochastic and constantly varying environments, augmented intelligence (AI) is introduced in MEC for intelligent decision making. For this reason, several recent works have focused on intelligent offloading in MEC to harvest its potential benefits. Therefore, machine learning (ML)-based approaches, including reinforcement learning, supervised/unsupervised learning, deep learning, as well as deep reinforcement learning for AI in MEC have become hot topics. However, many technical challenges still remain to be addressed for AI in MEC. In this article, the basic concept of MEC and main applications are introduced, and existing fundamental works using various ML-based approaches are reviewed. Furthermore, some potential issues of AI in MEC for future work are discussed.


Introduction


Toward the fifth generation (5G) [1] mobile communications network, ubiquitous and intelligent cloud computing is one of the key technologies. However, the powerful cloud center is usually deployed far away from mobile users, and thus huge amounts of traffic are usually transmitted through multiple intermediate nodes. As a result, heavy load, congestion, delay, energy consumption, and so on could be incurred, and these would weaken the advantages of cloud computing. Therefore, multi-access edge computing (MEC) [2], which moves computing resource from the core network to the edge, is proposed as a natural design. Figure 1 illustrates the typical architecture and main applications of MEC in heterogeneous networks (HetNets) [3]. Different from the remote cloud center, MEC is a distributed network architecture at the edge network.

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

یک بررسی در مورد تخلیه هوشمند در رایانش مرزی
نوشته های مرتبط
مقالات جدید
لوگوی رسانه های برخط

logo-samandehi

پیوندها