توانمندسازی اینترنت لمسی برای فضای کار مشترک انسان-ماشین
ترجمه نشده

توانمندسازی اینترنت لمسی برای فضای کار مشترک انسان-ماشین

عنوان فارسی مقاله: کاهش تأخیر در ماشین های مجازی: توانمندسازی اینترنت لمسی برای فضای کار مشترک انسان-ماشین
عنوان انگلیسی مقاله: Reducing Latency in Virtual Machines: Enabling Tactile Internet for Human-Machine Co-Working
مجله/کنفرانس: مجله مناطق منتخب در ارتباطات - Journal on Selected Areas in Communications
رشته های تحصیلی مرتبط: کامپیوتر
گرایش های تحصیلی مرتبط: هوش مصنوعی، معماری سیستم های کامپیوتری، طراحی و تولید نرم افزار
شناسه دیجیتال (DOI): https://doi.org/10.1109/JSAC.2019.2906788
دانشگاه: Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
صفحات مقاله انگلیسی: 32
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 11/554 در سال 2018
شاخص H_index: 211 در سال 2019
شاخص SJR: 2/294 در سال 2018
شناسه ISSN: 0733-8716
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13216
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I- Introduction and Motivation

II- Background and Related Work

III- Proposed Approach: Chain Based Low Latency VNF Implementation (CALVIN)

IV- Performance Evaluation of Elementary and Basic Functions

V- Evaluation of Computation- Intensive Advanced VNFs

VI- CONCLUSION

References

بخشی از مقاله (انگلیسی)

Abstract

Software-defined networking (SDN) and network function virtualization (NFV) processed in multi-access edge computing (MEC) cloud systems have been proposed as critical paradigms for achieving the low latency requirements of the tactile Internet. While virtual network functions (VNFs) allow greater flexibility compared to hardware-based solutions, the VNF abstraction also introduces additional packet processing delays. In this paper, we investigate the practical feasibility of NFV with respect to the tactile Internet latency requirements. We develop, implement, and evaluate Chain-based Low latency VNF ImplemeNtation (CALVIN), a low-latency management framework for distributed Service Function Chains (SFCs). CALVIN classifies VNFs into elementary, basic, and advanced VNFs; moreover, CALVIN implements elementary and basic VNFs in the kernel space, while the advanced VNFs are implemented in the user space. Throughout, CALVIN employs a distributed mapping with one VNF per Virtual Machine (VM) in a MEC system. Furthermore, CALVIN avoids the metadata structure processing and batch processing of packets in the conventional Linux networking stack so as to achieve short per-packet latencies. Our rigorous measurements on off-the-shelf conventional networking and computing hardware demonstrate that CALVIN achieves round-trip times from a MEC ingress point via two elementary forwarding VNFs (one in kernel space and one in user space) and a MEC server to a MEC egress point on the order of 0.32 ms. Our measurements also indicate that MEC network coding and encryption are feasible for small 256 byte packets with an MEC latency budget of 0.35 ms; whereas, large 1400 byte packets can complete the network coding, but not the encryption within the 0.35 ms.

INTRODUCTION AND MOTIVATION

Low latency communication is the central requirement for enabling the tactile Internet for human-machine co working [1]–[6]. Both, humans and machines require latencies below one millisecond for a wide range of co working scenarios. For instance, for humans operating in a virtual world and for interactions with robots and other machines, the latencies for visual, audio, or tactile multi-sensoric feedback should be below 15 ms, 3 ms, or 1 ms, respectively [7]. Every machine based on control loops also requires low latencies in order to work efficiently or to operate in a stable manner [8], [9]. As a concrete example, consider a classical inverted pendulum whose controller is placed in the cloud. Closing the control loop through a communication network will likely introduce some delays and packet losses. Fig. 1 shows the influence of the delay between the angle sensor and pendulum actuator (motor) on the pendulum stability. For long delays (50 ms in Fig. 1), the system becomes unstable, and the pendulum will never reach stability in the inverted position. For shorter delays (40 ms), the system takes some time to achieve stability. This time delay could imply lack of quality of service, and may affect other systems if the pendulum is part of a more complex environment with interconnected systems, or multiple pendulums coexisting in the same physical space.