Abstract
Introduction
Review of relevant literature
Case description of predictive maintenance
Conclusions
References
Abstract
The Industry 4.0 era requires new quality management systems due to the ever increasing complexity of the global business environment and the advent of advanced digital technologies. This study presents new ideas for predictive quality management based on an extensive review of the literature on quality management and five realworld cases of predictive quality management based on new technologies. The results of the study indicate that advanced technology enabled predictive maintenance can be applied in various industries by leveraging big data analytics, smart sensors, artificial intelligence (AI), and platform construction. Such predictive quality management systems can become living ecosystems that can perform cause-effect analysis, big data monitoring and analytics, and effective decision-making in real time. This study proposes several practical implications for actual design and implementation of effective predictive quality management systems in the Industry 4.0 era. However, the living predictive quality management ecosystem should be the product of the organizational culture that nurtures collaborative efforts of all stakeholders, sharing of information, and co-creation of shared goals.
Introduction
In today’s competitive global environment, businesses need to be agile, flexible, resilient, and possess dynamic capabilities [1, 2]. The advent of advanced digital technologies makes it possible for firms to completely innovate the concept of quality management. A living ecosystem equipped with advanced digital technologies (e.g., smart sensors, machine learning, big data analytics, and artificial intelligence (AI)) can be developed to manage quality [2]. On August 14, 2018, a 200-m section of the Ponte Morandi Bridge (built in 1968) in Genoa, Italy, collapsed causing 41 deaths, 5 missing, and 15 injured. The main causes of bridge collapse were aging and lack of bridge management. Incidents such as this highlight the importance of bridge maintenance. Structural health monitoring (SHM), a new technique developed for structure maintenance, is an up-to-date technology-based system that analyzes weaknesses of existing systems, such as locating local and global damage structure and the significance of such damages. The speed and precision of decision-making for bridge repair and maintenance are facilitated by real-time monitoring of bridge conditions. Bansal et al. [3] proposed a real-time predictive maintenance system using neural network methods, while Shi and Zeng [4] suggested a condition-based maintenance strategy that considers economic factors for predictive maintenance in real time. Predictive maintenance, also known as condition-based maintenance, is possible today due to the advanced digital technologies [3–6].