محلی سازی روبات های تلفن همراه
ترجمه نشده

محلی سازی روبات های تلفن همراه

عنوان فارسی مقاله: فیلتر ذرات بهبود یافته برای محلی سازی روبات های تلفن همراه بر اساس بهینه سازی ازدحام ذرات
عنوان انگلیسی مقاله: An improved particle filter for mobile robot localization based on particle swarm optimization
مجله/کنفرانس: سیستم های خبره با کابردهای مربوطه – Expert Systems with Applications
رشته های تحصیلی مرتبط: مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: الگوریتم و محاسبات
کلمات کلیدی فارسی: روبات تلفن همراه، محلی سازی جهانی، ردیابی حالت محلی، فیلتر ذرات، بهینه سازی ازدحام ذرات
کلمات کلیدی انگلیسی: Mobile robot، Global localization، Local pose tracking، Particle filter، Particle swarm optimization
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.eswa.2019.06.006
دانشگاه: Department of Automation, University of Science and Technology of China, Hefei 230027, PR China
صفحات مقاله انگلیسی: 13
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 5.891 در سال 2018
شاخص H_index: 162 در سال 2019
شاخص SJR: 1.190 در سال 2018
شناسه ISSN: 0957-4174
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13562
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Preliminaries

3. Proposed algorithm

4. Experimental results

5. Conclusion

CRediT authorship contribution statement

Declaration of Competing Interest

Acknowledgments

References

بخشی از مقاله (انگلیسی)

Abstract

As one of the most important issues in the field of mobile robotics, self-localization allows a mobile robot to identify and keep track of its own position and orientation as the robot moves through the environment. In this work, a hybrid localization approach based on the particle filter and particle swarm optimization algorithm is presented, focusing on the localization tasks when an a priori environment map is available. This results an accurate and robust particle filter based localization algorithm that is able to work in symmetrical environments. The performance of the proposed approach has been evaluated for indoor robot localization and compared with two benchmark algorithms. The experimental results show that the proposed method achieves robust and accurate positioning results in indoor environments, requiring fewer particles than the benchmark methods. This advance could be integrated in a wide range of mobile robot systems, helping to reduce the computational cost and improve the navigation efficiency.

Introduction

Along with the technological advancements in the field of mobile robotics, research interest in autonomous mobile robots has been increasing in the past decades. A diverse range of applications in rescue (Michael et al., 2014), mining (Ma & Mao, 2018), agriculture (Bengochea-Guevara, Conesa-Muñoz, Andújar, & Ribeiro, 2016), military (Miksik, Petyovsky, Zalud, & Jura, 2011) and civilian tasks (Choi, Lee, Viet, & Chung, 2017; Le, Phung, & Bouzerdoum, 2014; Song, Gao, Ding, Deng, & Chao, 2017) encourage researchers to carry out research works in mobile robotics. Self-localization is a prerequisite for successful deployment of an autonomous mobile robot since it identifies the robot’s pose (position and orientation) as it moves in the environment. By providing an “absolute” position estimate to the map frame, robot localization is one of the critical issues for mobile robot systems and it is typically the foundation of a variety of tasks, including map building, autonomous navigation, mobile manipulation, target tracking, etc. The mobile robot localization problem falls into two main categories: global localization (GL) and local pose tracking (relocalization) (Thrun, Burgard, & Fox, 2005). The local pose tracking problem assumes that the initial pose of the robot is already known, and it tries to keep track of the robot state over time. The GL problem is fundamentally different because no prior knowledge about the robot’s position is available, hence the robot has to locate itself from scratch and reduce the ambiguities of pose estimates.