تکامل عصبی مبتنی بر دستور زبان
ترجمه نشده

تکامل عصبی مبتنی بر دستور زبان

عنوان فارسی مقاله: تکامل عصبی مبتنی بر دستور زبان احتمالی برای طبقه بندی سیگنال فیزیولوژیکی تند طپشی بطنی
عنوان انگلیسی مقاله: Probabilistic grammar-based neuroevolution for physiological signal classification of ventricular tachycardia
مجله/کنفرانس: سیستم های خبره با کابردهای مربوطه – Expert Systems with Applications
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: هوش مصنوعی، شبکه های کامپیوتری
کلمات کلیدی فارسی: طبقه بندی سیگنال فیزیولوژیکی، بیماری های قلبی، تکامل عصبی، دستور زبان احتمالی، برنامه ریزی ژنتیکی، شبکه عصبی عمیق
کلمات کلیدی انگلیسی: Physiological signal classification، Heart disease، Neuroevolution، Probabilistic grammar، Genetic programming، Deep neural network
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.eswa.2019.06.012
دانشگاه: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong
صفحات مقاله انگلیسی: 12
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 5.891 در سال 2018
شاخص H_index: 162 در سال 2019
شاخص SJR: 1.190 در سال 2018
شناسه ISSN: 0957-4174
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13567
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Related works

3. Deep neural network structure search space

4. Deep neural network topology

5. Adaptive grammar-based deep neuroevolution

6. Data set

7. Evaluation: comparison with other classifiers

8. Evaluation: comparison among different variants

9. Discussion and future work

Conflict of interest

CRediT authorship contribution statement

Acknowledgments

References

بخشی از مقاله (انگلیسی)

Abstract

Ventricular tachycardia is a rapid heart rhythm that begins in the lower chambers of the heart. When it happens continuously, this may result in life-threatening cardiac arrest. In this paper, we apply deep learning techniques to tackle the problem of the physiological signal classification of ventricular tachycardia, since deep learning techniques can attain outstanding performance in many medical applications. Nevertheless, human engineers are required to manually design deep neural networks to handle different tasks. This can be challenging because of many possible deep neural network structures. Therefore, a method, called ADAG-DNE, is presented to automatically design deep neural network structures using deep neuroevolution. Our approach defines a set of structures using probabilistic grammar and searches for best network structures using Probabilistic Model Building Genetic Programming. ADAG-DNE takes advantages of the probabilistic dependencies found among the structures of networks. When applying ADAG-DNE to the classification problem, our discovered model achieves better accuracy than AlexNet, ResNet, and seven non-neural network classifiers. It also uses about 2% of parameters of AlexNet, which means the inference can be made quickly. To summarize, our method evolves a deep neural network, which can be implemented in expert systems. The deep neural network achieves high accuracy. Moreover, it is simpler than existing deep neural networks. Thus, computational efficiency and diagnosis accuracy of the expert system can be improved.

Introduction

Cardiovascular disease is the leading cause of death among people. According to the report released by the American Heart Association (Benjamin et al., 2018), cardiac arrest as an underlying cause of death in 2015 was 17668; any-mention mortality in 2015 was 366807. If patients suffer from endstage renal disease (a type of kidney disease), arrhythmias (i.e. heart rhythm disorder) and sudden cardiac death accounts for nearly 40% of the deaths (Benjamin et al., 2018). In this paper, we are focusing on the diagnosis of ventricular tachycardia in Intensive Care Unit (ICU). Ventricular tachycardia is a heart arrhythmia initiated by abnormal electrical signals in the lower chambers of the heart (Berbari, Scherlag, Hope, & Lazzara, 1978; Bradfield, Boyle, & Shivkumar, 2017; Uther, Dennett, Duffy, Freedman, & Tan, 1979). An ICU in a hospital is a facility dedicated to providing life support and monitoring in patients who are critically ill, for instance, life-threatening illness, injuries, and multiple organ failures. ICU care is important to other medical services, including surgery (World Health Organization, 2003), or care for patients with complications of diseases (Baker, 2009). Higher quality of ICU will also increase citizen confidence in the health care system (Riviello, Letchford, Achieng, & Newton, 2011). In clinical management of ICU, real-time physiological measurement systems help clinicians to continually monitor the physiological status of patients. For example, pulse oximeter provides the oxygen saturation values and shows the plethysmographic waveform of the pulse signal over time (Shamir, Eidelman, Floman, Kaplan, & Pizov, 1999).