شبکه های دسترسی رادیویی ابر ناهمگن
ترجمه نشده

شبکه های دسترسی رادیویی ابر ناهمگن

عنوان فارسی مقاله: تشکیل پرتو سازگار و ارتباط کاربر در شبکه های دسترسی رادیویی ابر ناهمگن: یک مبادله هزینه و عملکرد آگاه از تحرک
عنوان انگلیسی مقاله: Adaptive beamforming and user association in heterogeneous cloud radio access networks: A mobility-aware performance-cost trade-off
مجله/کنفرانس: شبکه های کامپیوتری – Computer Networks
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی فناوری اطلاعات و ارتباطات
گرایش های تحصیلی مرتبط: رایانش ابری، مهندسی الگوریتم و محاسبات، مخابرات سیار
کلمات کلیدی فارسی: شبکه دسترسی رادیویی ابر ناهمگن، تشکیل پرتو، خوشه بندی، ارتباط کاربر با رادیو از راه دور، سربار اطلاعات وضعیت کانال
کلمات کلیدی انگلیسی: H-CRAN، Beamforming، Clustering، User-to-RRH association، CSI Overhead
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.comnet.2019.05.005
دانشگاه: LRI Laboratory, CNRS – Univ. Paris-Saclay – Univ. Paris-Sud, Orsay, France
صفحات مقاله انگلیسی: 14
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.205 در سال 2018
شاخص H_index: 119 در سال 2019
شاخص SJR: 0.592 در سال 2018
شناسه ISSN: 1389-1286
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13677
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. State of the art

3. System model

4. Problem formulation and reference schemes

5. Proposed adaptive beamforming and user clustering (ABUC) algorithm

6. Cost analysis of the proposed ABUC algorithm

7. Optimizing ABUC’s feedback parameters using Q-learning

8. Simulation results

9. Conclusion

Conflicts of Interest

Acknowledgements

Appendix A. Supplementary materials

Research Data

References

بخشی از مقاله (انگلیسی)

Abstract

Heterogeneous Cloud Radio Access Network (H-CRAN) is a promising network architecture for the future 5G mobile communication system to address the increasing demand for mobile data traffic. In this work, we consider the design of efficient joint beamforming and user clustering (user-to-Remote Radio Head (RRH) association) in the downlink of a H-CRAN where users have different mobility profiles. Given the rapidly time-varying nature of such wireless environment, it becomes very challenging to enable optimized beamforming and user clustering without incurring large Channel State Information (CSI) and signaling overheads. The main objective of this work is to investigate and evaluate the trade-off between system throughput and the incurred costs in terms of complexity and signaling overhead, including the impact of different CSI feedback strategies given different user mobility profiles. We propose the Adaptive Beamforming and User Clustering (ABUC) algorithm which adapts its feedback parameters, namely the period of dynamic user clustering and the type of CSI feedback, in function of user mobility. Furthermore, we design a reinforcement-learning framework which enables the proposed ABUC algorithm to optimize its scheduling parameters on-the-fly, given each user mobility profile. Based on computer simulations, an analysis of the effect of mobility on system performance metrics is presented and conclusions are drawn regarding the algorithm’s adequate parameter tuning for different mobility scenarios.

Introduction

Next generation of mobile and wireless communications system (5G) will revolutionize the way people communicate and extend the boundaries of the wireless industry. 5G will move beyond networks that are purpose-built for mobile broadband alone, toward systems that connect far more different types of devices at different speeds. The Internet of Things (IoT) is one of the primary contributors to global mobile traffic growth and this progression will lead to a huge mobile and wireless traffic volume predicted to increase a thousand-fold over the next decade [2]. Besides sustaining the tremendous growth of the traffic load, 5G system will be designed to fulfill diverse application requirements: far more stringent latency and reliability levels are expected to be necessary to support applications related to healthcare, security, logistics, automotive applications, or mission-critical control; Network scalability and flexibility are required to support a large number of devices with very low complexity and to enable long battery lifetimes [3]. 5G system is envisioned to meet such challenges thanks to the combination of several breakthroughs and technological advances such as ultra-dense small-cell deployments, intelligent multi-antenna, full duplex radios, millimeter wave transmissions, and cloud computing abilities. Particularly, the Cloud Radio Access Network (CRAN) is a network architecture based on cloud computing and centralized processing. It has been shown to provide high spectral and energy efficiencies while reducing both capital and operating expenditures [4].