تخمین کور توزیع شده در شبکه های حسگر بی سیم
ترجمه نشده

تخمین کور توزیع شده در شبکه های حسگر بی سیم

عنوان فارسی مقاله: تخمین کور توزیع شده مبتنی بر استنتاج آماری در شبکه های حسگر بی سیم
عنوان انگلیسی مقاله: Statistical Inference-Based Distributed Blind Estimation in Wireless Sensor Networks
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: مهندسی الگوریتم و محاسبات، شبکه های کامپیوتری
کلمات کلیدی فارسی: تخمین توزیع شده، حداکثر انتظار، مدل ترکیبی گاوسی، انتقال تصادفی، استنباط آماری، شبکه حسگر بی سیم
کلمات کلیدی انگلیسی: Distributed estimation, expectation maximum, Gaussian mixture model, random transmission, statistical inference, wireless sensor network
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2947433
دانشگاه: Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
صفحات مقاله انگلیسی: 14
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13877
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. System Model and Problem Formulation

III. Random Transmission Strategy

IV. Statistical Inference Principle

V. Summary of the Blind Estimation Scheme

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

To realize the Internet of Things, one of the essential elements is wireless sensor networks which can sense the physical conditions of the environment. The ubiquitous sensing is achieved by a large number of spatially dispersed sensors and distributed estimation technology. However, the low-cost sensors are insufficient to support conventional distributed estimation schemes. Since most conventional schemes include channel training process, the resource consumption of which is enormous. Thus, one key challenge in designing a feasible distributed estimation scheme is to reduce resource consumption from channel training. We tackle the challenge by proposing a distributed blind estimation scheme. The proposed scheme consists of two components: random transmission and statistical inference. Specifically, assuming sensors contain only two states that are active and inactive. The random transmission strategy turns the sensing value into a parameter to govern the sensor states. At the fusion center, statistical inference method is used to recover the sensing value. The specific design of the inference method involves the distribution approximation and clustering, which are accomplished by Gaussian mixture model and expectation-maximization principle. By the proposed scheme, the channel information is no longer needed in distributed estimation. Therefore, it is more energy-efficient and more applicable to the complicated wireless environment compared with conventional schemes. Besides, we investigate the impacts of the number of sensors and quantization on the estimation performance. Finally, simulation results demonstrate the effectiveness of the proposed blind estimation scheme.

Introduction

Ubiquitous sensing enabled by wireless sensor networks (WSN) has attracted increasing attention because of its various application areas including environment monitoring [1], health management [2], traffic monitoring [3] and industrial control [4], etc. The WSN develops rapidly since it contains the following advantages: the distributed processing of a large amount of collected information can improve the accuracy of monitoring and reduce the accuracy requirements for a single sensor; the redundant sensors make the system robust; a large number of sensors can increase the coverage of the monitored area. In the various applications, distributed estimation is one of the critical technologies since it can provide accurate estimates of the parameters of the phenomenon [5]. In large WSNs, one factor which affects the distributed estimation performance is the form of the sensor measurements (digital and analog). For the analog approach, the measurements are transmitted directly or via analog modulation to the fusion center (FC). For the digital approach, the sensors quantize the measurements first and then transmit the quantized measurements to the FC.