الگوریتم جدید کرم شب تاب برای برنامه ریزی
ترجمه نشده

الگوریتم جدید کرم شب تاب برای برنامه ریزی

عنوان فارسی مقاله: یک الگوریتم جدید کرم شب تاب برای برنامه ریزی برنامه های کاربردی دسته بندی وظایف تحت محدودیت های بودجه روی ابرهای ترکیبی
عنوان انگلیسی مقاله: A Novel Firefly Algorithm for Scheduling Bag-of-Tasks Applications Under Budget Constraints on Hybrid Clouds
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: مهندسی الگوریتم و محاسبات، رایانش ابری
کلمات کلیدی فارسی: برنامه های کاربردی دسته بندی وظایف، ابرهای ترکیبی، زمان کل، الگوریتم های کرم شب تاب
کلمات کلیدی انگلیسی: Bag-of-tasks applications, hybrid clouds, makespan, firefly algorithms
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2948468
دانشگاه: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
صفحات مقاله انگلیسی: 14
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13889
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. Related Work

III. Scheduling Model

IV. Proposed Novel Firefly Algorithm (NFA)

V. Experimental Results

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

This paper aims at scheduling bag-of-tasks (BoT) applications under budget constraints on hybrid clouds for minimizing the makespan. To solve this NP-hard problem, we propose a novel firefly algorithm (NFA) in which the evaluation of a firefly consists of two steps: (1) mapping a firefly to a scheduling solution (a task sequence); (2) calculating the solution’s objective (its corresponding makespan). In the first step, different from the well-known ranked-order value (ROV) rule, we propose a distancebased mapping operator that relies on the distance between a firefly and the brightest one to determine the mapping relationship between a firefly and a solution. We use a probability model in which solutions corresponding to fireflies closer to the brightest one would have higher probabilities to inherit tasks from the current best solution. In this manner, these solutions can inherit more ‘‘good genes’’ hidden inside the current best solution to evolve into more high-quality solutions. In the second step, we employ an effective heuristic to evaluate solution objectives. We further develop a composite heuristic to generate the initial best solution, providing the proposed NFA with a good start. We also establish a new movement scheme such that fireflies distant from the brightest one can explore a wide range in the search space, whereas fireflies nearby the brightest one can search in a small neighborhood. Experimental results show that, by employing the above-mentioned strategies, NFA outperforms the standard firefly algorithm and the existing best algorithm, in terms of scheduling effectiveness and computational efficiency. Specifically, the distance-based mapping operator is verified to be both more effective and more efficient than the ROV rule. The composite heuristic is capable of generating a good initial solution, leading to the high quality of the final schedule. The movement scheme can further reduce the makespan of BoT applications.

Introduction

Cloud computing is a popular distributed computing paradigm that can deliver a massive amount of computing resources in a pay-as-you-go manner. In other words, users only need to pay what they have actually used. As a result, users can temporally use computing resources of public clouds while the private cloud cannot provide sufficient resources. In order to achieve this target, cloud vendors offer hybrid cloud solutions that integrates a private cloud with public clouds seamlessly. As illustrated in Figure 1, with the aid of hybrid cloud solutions, administrators or programs of the private cloud can manage the computing resources of the hybrid cloud (i.e., the private cloud and public clouds) via unified interfaces. For example, in case that the available computing resources of the private cloud cannot afford an instance of a ‘‘large’’ virtual machine (VM) type for processing a specific task, an instance of the same VM type can be created on a public cloud to tackle this task. In addition, many cloud providers now can deliver and charge VM instances in seconds (e.g., QingCloud1 and TecentCloud2 ) instead of in hours. This new charging mechanism makes hybrid clouds more popular for cloud customers, since they would not waste a certain fraction of the last hour that has to be paid entirely in traditional charging mechanisms.