الگوریتم اندازه گیری سرعت یکپارچه
ترجمه نشده

الگوریتم اندازه گیری سرعت یکپارچه

عنوان فارسی مقاله: الگوریتم اندازه گیری سرعت یکپارچه مبتنی بر جریان نوری و تغییر ویژگی ثابت مقیاس
عنوان انگلیسی مقاله: Integrated Velocity Measurement Algorithm Based on Optical Flow and Scale-Invariant Feature Transform
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی برق، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: ابزار دقیق، مهندسی الگوریتم و محاسبات
کلمات کلیدی فارسی: فیلتر کالمن مکعبی، جریان نوری، تصحیح خطای باقی مانده، تغییر ویژگی ثابت مقیاس
کلمات کلیدی انگلیسی: Cubature Kalman filter, optical flow, residual error correction, scale-invariant feature transform
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2948837
دانشگاه: Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
صفحات مقاله انگلیسی: 11
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13897
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. Algorithm Introduction

III. Model and Proposed Strategy

IV. Experiment Results and Discussion

V. Conclusion

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

The pyramid Lucas-Kanade (LK) optical flow algorithm has been widely used in velocity measurement applications. However, these applications are limited by some shortcomings of the algorithm, such as its slow calculation speed and susceptibility to illumination changes. To solve these problems, a data fusion scheme based on the scale-invariant feature transform (SIFT) and optical flow is proposed to alleviate the dependence of the optical flow on the illumination conditions. In addition, an improved cubature Kalman filter (CKF) based on multi-rate residual correction (CKF-MRC) is proposed to solve the problem of inconsistency between the sampling frequencies of the SIFT and the optical flow, and takes full advantage of the high sampling frequency of SIFT. The experimental results demonstrate that the proposed CKF-MRC method can effectively improve the accuracy of velocity measurement under variable illumination conditions with a high sampling frequency.

Introduction

In recent years, rapid progress has been made in the development of unmanned aerial vehicle (UAV) technology. UAVs have been widely used in fields such as reconnaissance, military strikes, aerial photography, mapping and emergency rescue [1]–[5]. In addition, the optical flow navigation method inspired by insect motion is playing an increasingly important role in navigation in GPS-signal-denied environments. Optical flow (OF) can be regarded as the 2D projection movement of the 3D motion of observed objects [6]–[10]. The bioinspired OF navigation scheme has been developed accordingly, with superior properties that include small device volume, low power requirements, high autonomy and low cost, which are especially important in UAV navigation applications [11]–[13]. When OF is used as the sole navigation scheme, it can easily be disturbed by the surrounding environment, which leads to reduced navigation accuracy. Many researchers have made corresponding improvements to make the OF algorithm conform to a variety of environments. For example, [14] proposed an information fusion method based on a microelectromechanical systems-based inertial measurement unit (MEMS-IMU) and OF, which was used to correct the MEMSIMU’s attitude when it diverged; simulation results showed that modification of the vehicle attitude in combination with OF provided good performance, with the advantages of smaller errors, slow divergence and improved robustness.