کنترل ردیابی مجانبی برای سیستم های غیرخطی
ترجمه نشده

کنترل ردیابی مجانبی برای سیستم های غیرخطی

عنوان فارسی مقاله: کنترل ردیابی مجانبی برای یک کلاس از سیستم های غیرخطی بازخورد خالص
عنوان انگلیسی مقاله: Asymptotic Tracking Control for a Class of Pure-Feedback Nonlinear Systems
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی برق، مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: برق مخابرات، شبکه های کامپیوتری
کلمات کلیدی فارسی: ثبات مجانبی، شبکه های عصبی، سیستم های کنترل غیرخطی، سیستم های بازخورد خالص
کلمات کلیدی انگلیسی: Asymptotic stability, neural networks, nonlinear control systems, pure-feedback systems
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2954135
دانشگاه: Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
صفحات مقاله انگلیسی: 8
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14040
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. Problem Statement and Preliminaries

III. Adaptive Tracking Control

IV. Stability Analysis

V. Simulation Resultsion

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

This paper studies the adaptive asymptotic tracking problem for a class of unknown nonlinear systems in pure-feedback form. Different from the traditional literatures which only tackle the bounded tracking problem for pure-feedback systems, this paper investigates the asymptotic tracking problem by developing a novel controller design method. Moreover, the differentiable assumption on nonaffine functions is canceled, and only a mild semi-bounded assumption is required as the controllability condition. By utilizing Lyapunov theorem, it is proved that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded, and the output tracking error can converge to zero asymptotically by choosing design parameters appropriately. Finally, a simulation result is presented to verify the effectiveness of the proposed control scheme.

Introduction

In the last several decades, adaptive control techniques have been found to be powerful for controlling the trianglestructural nonlinear systems in terms of either pure-feedback or strict-feedback [1]–[17]. Specifically, pure-feedback systems do not have the explicit control input, which makes the control design very difficult and draws much interest in the control community for a long time [8]–[17]. In [10], to solve the prescribed performance tracking control problem, a low-complexity control scheme is designed for a class of unknown pure-feedback systems. In [11], a predefinedtracking-constrained-based adaptive control scheme is developed for a class of switched stochastic nonlinear systems in the pure-feedback form with dead zone output. By employ the mean value theorem to convert the nonaffine function into an affine form, all these studies referred above have presented a unified and general framework for pure-feedback nonlinear control system design. However, there are still a number of issues should have been further studied, such as, the mean value theorem requires the nonaffine function must be differentiable with respect to the control variables or input. In the hope to overcome these problems, in [12], a pioneering modeling method is presented under the mild assumptions. Instead of utilizing mean value theorem and implicit function theorem, this control method does not require that the nonaffine functions must be differentiable. Subsequently, the controllability conditions are relaxed to semi-bounded and discontinuity in [13] and [14], respectively. In [15], the further research is devoted to a class of more general MIMO pure-feedback nonlinear systems with periodic disturbances.