شبکه تشخیص آتش سوزی سبک وزن غیر موقت
ترجمه نشده

شبکه تشخیص آتش سوزی سبک وزن غیر موقت

عنوان فارسی مقاله: شبکه تشخیص آتش سوزی سبک وزن غیر موقت برای سیستم های هوشمند نظارتی
عنوان انگلیسی مقاله: Non-Temporal Lightweight Fire Detection Network for Intelligent Surveillance Systems
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: هوش مصنوعی، شبکه های کامپیوتری
کلمات کلیدی فارسی: تشخیص آتش، یادگیری عمیق، شبکه های عصبی پیچشی، طبقه بندی تصویر
کلمات کلیدی انگلیسی: Fire detection, deep learning, convolutional neural networks, image classification
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2953558
دانشگاه: Department of Electronic Engineering, Inha University, Incheon 22212, South Korea
صفحات مقاله انگلیسی: 10
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14048
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. Proposed Algorithm

III. Experiments

IV. Robustness Analysis

V. Conclusion

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

Convolutional neural networks (CNNs) have been recently applied to tackle a variety of computer vision problems. However, because of its high computational cost, careful considerations are required to design cost-effective CNNs. In this paper, we propose a CNN inspired by MobileNet for fire detection in surveillance systems. In the proposed network, color features emphasized by the channel multiplier are extracted through depthwise separable convolution, and squeeze and excitation modules further increase the representation of the channel-wise convolution. Custom Swish is used as an activation function to limit exceedingly high weights from the effects of the channel multiplier. Our proposed network achieves 95.44% accuracy for fire detection, which is higher than those achieved other existing networks. Furthermore, the number of parameters used is 38.50% fewer than that of MobileNetV2, the smallest among other networks. We believe that using the proposed CNN, CNN-based surveillance systems could be implemented in lightweight devices without using expensive dedicated processors.

Introduction

Fires can occur anywhere, at any time, and if they are not detected early, they can cause severe damages to property and people. Surveillance systems consisting of multiple CCTVs can be very useful in detecting fires because they are designed to monitor the surroundings 24 hours a day. Furthermore, they can be very useful to monitor fires in a wide range of areas, including inaccessible areas. Consequently, there has been a huge demand for intelligent video-based fire monitoring systems that can alert people to respond quickly by processing and analyzing video streams in real-time. A video-based fire detection system can inform an operator by analyzing videos from CCTVs without using heat, smoke, or flame sensors. Owing to the significant development of video analysis, video signals from CCTVs can be automatically analyzed and can provide alarms to surveillance personnel to enable quick response. Traditional vision-based fire detection methods use handcrafted features, such as color, motion, and texture. Prior studies [1]–[4] detected fire by making full use of color features because fire is generally brighter and has higher contrast than other objects. Ko et al. [1] detected specific fire regions from their color and, then employed a model using wavelet coefficients to detect fire with a support vector machine (SVM) classifier.