جستجوی اشکال مبتنی بر یادگیری دو سطحی
ترجمه نشده

جستجوی اشکال مبتنی بر یادگیری دو سطحی

عنوان فارسی مقاله: BiN: جستجوی اشکال مبتنی بر یادگیری دو سطحی برای دوگانگی های معماری متقابل
عنوان انگلیسی مقاله: BiN: A Two-Level Learning-Based Bug Search for Cross-Architecture Binary
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: مهندسی الگوریتم و محاسبات، هوش مصنوعی، اینترنت و شبکه های گسترده
کلمات کلیدی فارسی: اینترنت اشیا، پلتفرم متقابل، آسیب پذیری دوگانه، اثر ساختار یافته، یادگیری عمیق
کلمات کلیدی انگلیسی: IoT, cross-platform, binary vulnerability, structured signature, deep learning
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2953173
دانشگاه: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450000, China
صفحات مقاله انگلیسی: 17
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14053
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. Background

III. Extracting Features of a Binary Function

IV. Semantic Learning Predictor

V. Evaluation

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

With the popularity of IoT (Internet of Things) devices, the security risks of these devices are increasing. However, due to the multisource heterogeneity of IoT devices, there are significant differences between the vulnerability detection of the Internet of Things and the PC-based vulnerability search method. Therefore, determining how to accurate search for vulnerabilities in large-scale cross-platform binary executable files is an urgent problem to be solved. At present, the solution to this problem mostly calculates code similarities by generating a CFG (control flow graph) from binary code, but due to the choice of architecture, OS (operating system) or compilation options, the same source code will be compiled into different assembly codes. The performance of existing vulnerability search methods for cross-architecture binaries has been challenged. To alleviate the vast differences in the assembly codes caused by different compilation scenarios, this paper proposes a cross-platform large-scale binary vulnerability search method based on two-level feature semantic learning. The contribution is that we have defined a new functional structured signature method to mitigate the massive grammatical and structural differences of binary files caused by different compilation environments. Moreover, we reasonably integrate the hierarchical model of Structure2Vec and GAT (graph attention network) and implement training from the internal control flow characteristics of the function and the call relationship between functions to obtain a more accurate functional semantic expression.

Introduction

Using open source code or using third-party libraries is a common approach in the development process, and the same vendor often reuses code, which also provides fertile ground for the generation and survival of vulnerabilities. If an organization does not fully understand all of the code it uses or there are bugs in the code, it will not be able to withstand common attacks against known vulnerabilities in these components, and it will also be exposed to risk [25], [30]. It is foreseeable that the same vulnerability function with different architectures may appear in a large number of IoT devices. To address this critical issue, researchers are devoting their efforts to developing automated analysis technologies to meet the needs of IoT product security testing [1]–[3], [26], [27]. In response to a wide variety of IoT devices, the ability to perform vulnerability searches in an efficient and accurate manner is becoming increasingly important. This vulnerability search technology will enable security practitioners to find problems with high efficiency, saving time and resources.