الگوریتم های پردازش سیگنال تطبیقی
ترجمه نشده

الگوریتم های پردازش سیگنال تطبیقی

عنوان فارسی مقاله: الگوریتم های پردازش سیگنال تطبیقی مبتنی بر تجزیه حالت تجربی (EMD) و تجزیه مقیاس زمانی ذاتی (ITD)
عنوان انگلیسی مقاله: Adaptive Signal Processing Algorithms Based on EMD and ITD
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی برق، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: مهندسی کنترل، مهندسی الگوریتم و محاسبات
کلمات کلیدی فارسی: بانک فیلتر تطبیقی، الگوریتم های حذف نویز، تجزیه حالت تجربی، تبدیل فوریه، تبدیل هیلبرت – هوانگ، نوسانات داخلی، تجزیه مقیاس زمانی ذاتی، تجزیه و تحلیل طیفی، انتقال موجک
کلمات کلیدی انگلیسی: Adaptive filter bank, denoising algorithms, empirical mode decomposition, Fourier transform, Hilbert-Huang transform, internal oscillations, intrinsic time-scale decomposition, spectral analysis, wavelet transform
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus – Master Journals List – JCR
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2956077
دانشگاه: Department of Automation and Control Processes, Saint Petersburg Electrotechnical University ‘‘LETI’’, Petersburg, Russia
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 9
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14057
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست انگلیسی مطالب

Abstract


I. Introduction


II. Algorithm EMD


III. Algorithm ITD


IV. Synthesis of Adaptive Filter Banks Using EMD and ITD


V. Spectral Analysis of Signals Using EMD, ITD and Hilbert Transform


Authors


Figures


References

نمونه متن انگلیسی مقاله

Abstract


In the last two decades, both Empirical Mode Decomposition (EMD) and Intrinsic Time-Scale Decomposition (ITD) algorithms deserved a variety of applications in various fields of science and engineering due to their obvious advantages compared to conventional (e.g. correlation- or spectral-based analysis) approaches like the ability of their direct application to non-stationary signal analysis. However, high computational complexity remains a common drawback of these otherwise universal and powerful algorithms. Here we compare similarly designed signal analysis algorithms utilizing either EMD or ITD as their core functions. Based on extensive computer simulations, we show explicitly that the replacement of EMD by ITD in several otherwise similar signal analysis scenarios leads to the increased noise robustness with simultaneous considerable reduction of the processing time. We also demonstrate that the proposed algorithms modifications could be successfully utilized in a series of emerging applications for processing of non-stationary signals.


Introduction


Majority of the observational signals considered in various fields of knowledge are non-stationary indicated by the variability of their statistical characteristics over time. In most practical scenarios, the stationarity assumption is validated for the first- and second-order moments only indicated by the time independence of both average and variance as well as the autocorrelation function having only a single time scale argument. Existing approaches to the non-stationary signal analysis and processing have several significant drawbacks. For example, the widely used classical Fourier analysis, due to its relative calculation simplicity and fast computational algorithms availability, immediately began to overwhelm all other signal analysis methods. Despite the fact that the Fourier transform is performed under very general assumptions such as the Dirichlet boundary conditions and absolute integrability, there are several significant limitations on the signals for which it is calculated [1]. Fourier analysis has been originally suggested for strictly periodic functions that could be directly expanded in a Fourier series, i.e. represented by a superposition of multiple harmonic functions. Otherwise, the frequency domain based analysis may lead to incorrect results interpretation. It is also necessary that signals exhibiting the stationarity property for their certain characteristics such as average values and instant frequencies [1].

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

الگوریتم های پردازش سیگنال تطبیقی
نوشته های مرتبط
مقالات جدید
لوگوی رسانه های برخط

logo-samandehi

پیوندها