تحولات تحقیق، روندها و چالش ها در مورد شناسایی و طبقه بندی بدافزارها
ترجمه نشده

تحولات تحقیق، روندها و چالش ها در مورد شناسایی و طبقه بندی بدافزارها

عنوان فارسی مقاله: ظهور یادگیری ماشینی برای شناسایی و طبقه بندی بدافزارها: تحولات تحقیق، روندها و چالش ها
عنوان انگلیسی مقاله: The rise of machine learning for detection and classification of malware: Research developments, trends and challenges
مجله/کنفرانس: مجله برنامه های کاربردی شبکه و رایانه - Journal Of Network And Computer Applications
رشته های تحصیلی مرتبط: کامپیوتر
گرایش های تحصیلی مرتبط: هوش مصنوعی، امنیت اطلاعات، مهندسی نرم افزار
کلمات کلیدی فارسی: شناسایی بدافزارها، مهندسی ویژگی، یادگیری ماشین، یادگیری عمیق، یادگیری چندوجهی
کلمات کلیدی انگلیسی: Malware detection، Feature engineering، Machine learning، Deep learning، Multimodal learning
نوع نگارش مقاله: مقاله مروری (Review Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.jnca.2019.102526
دانشگاه: University of Lleida, Jaume II, 69, Lleida, Spain
صفحات مقاله انگلیسی: 22
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 7/092 در سال 2019
شاخص H_index: 77 در سال 2020
شاخص SJR: 0/903 در سال 2019
شناسه ISSN: 1084-8045
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14346
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Related work

3- Background

4- Traditional machine learning approaches

5- Deep learning approaches

6- Multimodal approaches

7- Research issues and challenges

8- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

The struggle between security analysts and malware developers is a never-ending battle with the complexity of malware changing as quickly as innovation grows. Current state-of-the-art research focus on the development and application of machine learning techniques for malware detection due to its ability to keep pace with malware evolution. This survey aims at providing a systematic and detailed overview of machine learning techniques for malware detection and in particular, deep learning techniques. The main contributions of the paper are: (1) it provides a complete description of the methods and features in a traditional machine learning workflow for malware detection and classification, (2) it explores the challenges and limitations of traditional machine learning and (3) it analyzes recent trends and developments in the field with special emphasis on deep learning approaches. Furthermore, (4) it presents the research issues and unsolved challenges of the state-of-the-art techniques and (5) it discusses the new directions of research. The survey helps researchers to have an understanding of the malware detection field and of the new developments and directions of research explored by the scientific community to tackle the problem.

Introduction

A brief look at the history of malicious software reminds us that the presence of malware threats has been with us since the dawn of computing. The earliest documented virus appeared during the 1970s. It was known as the Creeper Worm and was an experimental self-replicating program that copied itself to remote systems and displayed the message: “I’m the creeper, catch me if you can”. Later, in the early 80s, appeared Elk Cloner, a boot-sector virus that targeted Apply II computers. From these simple beginnings, a massive industry was born and, since then, the fight against malware has never stopped. By the looks of it, this fight turned out to be a never-ending and cyclical arms race: as security analysts and researchers improve their defenses, malware developers continue to innovate, find new infection vectors and enhance their obfuscation techniques. Malware threats continue to expand vertically (i.e. numbers and volumes) and horizontally (i.e. types and functionality) due to the opportunities provided by technological advances. Internet, social networks, smartphones, IoT devices and so on, make it possible for the creation of smart and sophisticated malware.