یک رویکرد مبتنی بر یادگیری ماشین در مورد قیمت گذاری پارکینگ هوشمند
ترجمه نشده

یک رویکرد مبتنی بر یادگیری ماشین در مورد قیمت گذاری پارکینگ هوشمند

عنوان فارسی مقاله: یک سیستم قیمت گذاری کارامد پارکینگ هوشمند برای محیط شهر هوشمند: یک رویکرد مبتنی بر یادگیری ماشین
عنوان انگلیسی مقاله: An efficient smart parking pricing system for smart city environment: A machine-learning based approach
مجله/کنفرانس: نسل آینده سیستم های رایانه ای - Future Generation Computer Systems
رشته های تحصیلی مرتبط: اقتصاد، شهرسازی، معماری، فناوری اطلاعات
گرایش های تحصیلی مرتبط: اقتصاد مالی، طراحی شهری، مدیریت شهری، سامانه های شبکه ای، اینترنت و شبکه های گسترده، تکنولوژی معماری، شبکه های کامپیوتری
کلمات کلیدی فارسی: پیش بینی اشغال پارکینگ، قیمت گذاری پویای پارکینگ، قیمت گذاری پارکینگ بر اساس اشغال، قیمت گذاری مبتنی بر زمان، قیمت گذاری منطقه ای، یادگیری ماشین
کلمات کلیدی انگلیسی: Parking occupancy prediction، Dynamic parking pricing، Occupancy driven parking pricing، Time based pricing، Area based pricing، Machine learning
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.future.2020.01.031
دانشگاه: Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 7/007 در سال 2019
شاخص H_index: 93 در سال 2020
شاخص SJR: 0/835 در سال 2019
شناسه ISSN: 0167-739X
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 19
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14353
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست انگلیسی مطالب

Abstract


1- Introduction


2- Literature review


3- Problem formulation


4- The methodology


5- Results and discussions


6- Conclusion


References

نمونه متن انگلیسی مقاله

Abstract


Now-a-days, with the ever increasing number of vehicles, getting parking space at right place and on time has become an inevitable necessity for all across the globe. In this context, finding an unoccupied parking slot by the interested vehicle owners with least overhead becomes an NP-Hard problem bounded by various constraints. In-advance availability of information regarding parking occupancy plays a major role in hassle free trip optimization for motorists. It also facilitates services-cum-profit management for the parking owners. It further helps in curbing congestion by reducing cruising time and hence, helps in controlling pollution of the smart cities. Thus, accurate and timely information regarding parking occupancy and availability has become the basic need in the evolution of the smart cities. Motivated by these facts, an occupancy-driven machine learning based on-street parking pricing scheme is proposed in this paper. The proposed scheme uses machine learning based approaches to predict occupancy of parking lots, which in turn is used to deduce occupancy driven prices for arriving vehicles. In order to train, test, and compare different machine learning models, on-street parking data of Seattle city has been used. To the best of our knowledge, this is the first time that parking occupancy prediction system is used to generate occupancy based parking prices for on-street parking system of the Seattle city. Results obtained using the proposed occupancy driven machine learning based on-street parking pricing scheme demonstrate its effectiveness over other existing state-of-the-art schemes.


Introduction


In most of the cities around the world, parking is considered to be a big problem because of many reasons, such as increase in population size, number and size of vehicles, limited parking spaces, traffic congestion on roads, locations of parking lots etc. With the rapid increase in the number of vehicles, getting and providing parking slots has become a challenge for the parkers and transport authorities/owners respectively. Usage of private vehicles over public transportation is always individual’s choice due to varying comfort levels, less travel time, and ease of travel etc. With increase in private vehicles, cruising time and congestion increases invariably. Most of the vehicles spent significant time on roads in searching parking spaces instead of commuting. This increases congestion on the roads. Situations get even worse during rush hours and near hot spots. This unnecessary congestion leads to overcrowding of vehicles, increase in carbon emissions, and raises various traffic management problems.

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

یک رویکرد مبتنی بر یادگیری ماشین در مورد قیمت گذاری پارکینگ هوشمند
نوشته های مرتبط
مقالات جدید
نماد اعتماد الکترونیکی
پیوندها